INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

$$
\begin{aligned}
& \text { University Microfıms internatonal } \\
& \text { A Bell \& Howell Intormation Company } \\
& 300 \text { North Zeeb Road Ann Arbor. Mi 48106-1346 USA } \\
& 313761.4700 \quad 800.521-0600
\end{aligned}
$$

Effectiveness and other practical considerations of electric transmission line rights-of-way vegetation management in New York State

Nowak, Christopher Anthony, Ph.D.

State University of New York Col. of Environmental Science \& Forestry, 1993

EFFECTIVENESS AND OTHER PRACTICAL CONSIDERATIONS OF ELECTRIC TRANSMISSION LINE RIGHTB-OF-WAY VEGETATION MANAGEMENT IN NEW YORK BTATE

By

Christopher A. Nowak

A thesis
submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree

State University of New York College of Environmental Science and Forestry Syracuse, New York

Approved:
Faculty of Forestry

DEDICATION

I dedicate this thesis to my wife, Linda, and to my children, Tristan, Morgan, Rebekah, and Jocelyn. They have sacrificed much during my pursuit of a Ph.D., likely more than they or I appreciate.

ACKNOWLEDGEMENTS

At many points in my past career, I came close to choosing paths that would have led away from a Ph.D. But, with some persistence and work, and much support and presentation of opportunities from others, I have arrived at this point in my career.

This thesis is not the result of my singular efforts, but is the product of much sacrifice from, and cooperation and friendship with, many individuals.

I am appreciative of the funding provided by the Niagara Mohawk Power Corporation (NMPC) and the Empire State Electric Energy Research Corporation (ESEERCO). Specific thanks in this regard are extended to Ed Neuhauser, NMPC, and Kevin McLoughlin, ESEERCO. Thanks are also extended for indirect support in the form of project sponsorship by Dale Freed and Ed Neuhauser, NMPC. At their behest, and with their support, I was involved in all facets of the research process, including proposal writing and pursuit of funding. It was extremely beneficial to be involved in all aspects of these research programs. I owe this extraordinary opportunity to these people, and to others whose acknowledgements follow.

Many people helped execute various field study phases, including measuring 10,000 trees and driving 30,000 miles over one and one-half years. Bob Butts, Matt Delaney, Laura Alban, Amy Van Ord, Don Cameron, and Mike Flynn were integral in these and many other related efforts. Their help is greatly appreciated. Special thanks are extended to Mike Flynn. He persisted from the beginning, and approached all tasks with a smile.

I appreciate the friendship, respect, and encouragement of my colleagues and friends through my years at ESF, especially Don Bickelhaupt, Russ Briggs, Rich Kopp, Vicram Prabhu, Jim Sahm, and Jim Shepard, and including the other people present in this acknowledgement.

My committee members, Drs. Lawrence Abrahamson, Donald Leopold, Edward Neuhauser, Dudley Raynal, Steven Stehman, and Edwin White provided me advice, many challenges, weathered my mistakes, and shared in my accomplishments. I appreciate their perseverance, rigor, and criticism.

I specifically acknowledge the extraordinary efforts in my behalf from Ed Neuhauser, Ed White, and Larry Abrahamson.

Dr. Ed Neuhauser "saved" me from a life without a Ph.D. He offered me the opportunity to pursue a Ph.D. while at the same time providing a means to support my family in a reasonable manner. It was his support that allowed me to begin, and his continued support that has allowed me to carry the effort through to fruition. He opened a myriad of professional opportunities for me. Thanks Ed!

Dr. Ed White was one of the first professors to recognize my potential to be a scientist. It was his confidence and initial support back in 1985 that began this process. It was Ed that supported my move back to Syracuse from Florida in 1988. Thanks Ed! He and Larry (my bosses) have always understood my needs to balance work and family. They always allowed me the flexibility to learn about all facets of science and research, and were strongly supportive of me during those numerous periods when I was bumbling through the program.

Dr. Larry Abrahamson was specifically chosen to be my Major Professor because of his skills outside of research and academia (however, I now fully appreciate that these skills are critical to research and academia). I entered this program lacking strengths in many interpersonal skills. I believe I leave this program with those skills enhanced because of Larry. It is an honor to complete this program with Larry as my friend! Thanks Larry!

Finally, and to quote from my M.S. thesis' acknowledgements:

Lastly, and certainly not leastly, I acknowledge and appreciate the patience, persistence, love, and late night needle picking by my wife Linda, who has weathered my 10-year progression and development, to this point, in the sciences. She has provided the main, enjoyable sources of distraction from some of my manical (maniacal) pursuits

Things didn't change much over the course of the past 6 years. It has now been 16 years of patience, persistence, and love from Linda. My appreciation for her has increased with the years. There was no "late night needle picking" this time around, but there has been a lot of late nights watching her husband hunched over a lap top computer. The maniacal pursuits did continue. I expect that things will slow done a bit in that regard now, and my enjoyment of those "sources" of distraction, including my children, will increase.

TABLE OF CONFENTB

Page
DEDICATION ii
ACENOWLEDGEMENTS iii
ABSTRACT xiii
INTRODUCTION 1
LITERATURE REVIET 4
Definition of Electric Transmission Line Rights-of-way 4
Purpose of Electric Transmission Line Rights-of-way 4
Goal of Right-of-way Vegetation Management 5
Vegetation Management Methods on Electric Transmission Line Rights-of-way 6
Ecological Bases for Vegetation Management on Electric Transmission Line Rights-of-way 9
The Shrub Stability Approach and Egler's Initial Floristic Composition 11
Further Considerations of Egler's Initial Floristics Composition as a Basis for the Shrub Approach to Right-of-way Vegetation Management 12
GTUDY 1: VEGETATION MANAGEMENT TRENDS ON ELECTRIC TRANBMIESION LINE RIGHTB-OF-WAY IN NEW YORK BTATE
PREFACE 16
INTRODUCTION 16
MATERIALS AND METHODS 17
RESULTS AND DISCUSSION 20
Initial clearing Trends of VegetationManagement on Electric Transmission LineRights-of-way in New York State20
Treatment mode 20
Treatment method 20
Herbicide use 23
Post-Clearing Trends of Vegetation Managementon Electric Transmission Line Rights-of-wayin New York State23
Treatment mode 23
Treatment method 24
Herbicide use 24
Summary 25
Page
BTUDY 2: GELECTIVE VEGETATION MANAGEMENT ONELECTRIC TRANSMIESION LINE RIGHTS-OF-WAY IN NEW YORRgTATE: TREE DENEITY AND SPECIES COMPOAITION CHANGESFROM 1975 TO 1991
PREFACE 27
INTRODUCTION 27
MATERIALS AND METHODS 28
Study Site Descriptions 28
Organization of the 1975 Data 28
Plot Reestablishment 32
Tree Measurement 36
Hypothesis Testing 38
Statistical Analyses 41
Species Composition 43
RESULTS 46
Tree Density Changes 46
Species Composition 53
DISCUSSION 56
8TUDIES 3,4 AND 5: COBT EFFECTIVENESS OF VEGETATION MANAGEMENT METHODS ON A RECENTLY CLEARED ELECTRIC TRANBMIBSION LINE RIGHT-OF-WAY IN UPBTATE NEW YORX
PREFACE 61
INTRODUCTION 62
BACKGROUND 63
Defining Cost Effectiveness 63
Electric Transmission Line Right-of-way Vegetation Management Phases 65
MATERIALS AND METHODS 67
Study Area Description 67
Experimental Design Selection 68
Division of Treatment Plots into Three Studies 69
Experimental Design and Treatments for the Initial Clearing Study -- Study 3 69
Selective/basal 71
Nonselective/basal 71
Selective/cut stump 71
Nonselective/cut stump 73
Selective cut/no herbicide treatment 73
Nonselective cut/no herbicide treatment 73

TABLE OF CONTENTB

Page
Experimental Design and Treatments for the First and Second Conversion Cycle Herbicide Studies -- Study 4 73
Selective/basal 74
Nonselective/basal 74
Selective/stem-foliar 74
Nonselective/stem-foliar 76
Experimental Design and Treatments for the Second Conversion Cycle Herbicide Versus Non-herbicide Treatment Scheme Study -- Study 5 76
Brush hogging 77
Grubbing 77
Data Collection 79
Hypothesis Testing and Planned Comparisons 84
RESULTS AND DISCUSSION 86
Study 3 -- Initial Clearing Herbicide and Non- herbicide Treatment Methods 86
Study 4-- First Conversion Cycle Herbicide Treatment Methods 91
Study 4 -- Second Conversion Cycle Herbicide Treatment Methods 94
Study 5 -- Second Conversion Cycle Herbicide Versus Non-herbicide Treatment Methods 100
Other Cost Effectiveness Studies 110
Costs 114
Effectiveness 116
SUMMARY 117
FINAL CONSIDERATIONB 122
LITERATURE CITED 127
APPENDIX 135
vITA 197

Page

LIST OF TABLES

Table 1. Classification of electric transmission line right-of-way herbicides by primary mechanism of action 18
Table 2. Herbicides used for vegetation management on 21 right-of-way study sites (Studies 1 and 2) over the past four decades 21
Table 3. List of herbicides currently commonly used to manage vegetation on electric transmission line rights-of-way in New York state 22
Table 4. Study site and plot descriptions for the comparison of tree density on electric transmission line rights-of-way between 1975 and 1991 30
Table 5. List of plots excluded from Study 2 33
Table 6. Distance from original (1975) plot corners to new (1991) plot corners 35
Table 7. Relative density, relative frequency,importance values and rankings of tree species foundon electric transmission line rights-of-way in 1975and 1991 for both herbicide and hand cut treatmentplots44
Table 8. Mean estimated regression coefficients and Morisita-Horn similarity coefficients for describing electric transmission line right-of-way tree density pattern and species composition for 1975 and 1991 47
Table 9. P-values from paired t-test comparisons of coefficients from regression equations describing tree density across electric transmission line rights-of-way between 1975 and 1991 49
Table 10. Average age, years since the last selective tree removal treatment, and right-of-way width for the plots by treatment group, site condition, and forest region 51
Table 11. Correlation coefficients between right-of-way age, years since the previous selective tree removal treatment, right-of-way width, and 1975 whole plot tree density ($\mathrm{B}_{0}{ }^{*}$) with 1991 regression equation coefficients 54
Table 12. Relative density, relative frequency, importance values and rankings of trees, by genera, found on electric transmission line rights-of-way in 1975 and 1991 for both herbicide and hand cut treatment plots55
Table 13. Total active ingredient of herbicides applied during initial clearing and first and second conversion cycle studies 72
Table 14. Summary of costs associated with the initial clearing and first and second conversion cycle studies 80
Table 15. List of tree and desirable woody plant species present on the Volney-Marcy study area 82
Table 16. P-values from testing initial clearing treatment effects on desirable and undesirable vegetation and costs 87
Table 17. Mean desirable and tree stem density, tree sprout density, and percent of tree stumps that sprouted for initial clearing treatments at the end of the initial clearing cycle 88
Table 18. Mean costs for the initial clearing treatments 90
Table 19. P-values from testing the effects of first conversion cycle herbicide treatments on desirable vegetation and tree stems 92
Table 20. Mean desirable and tree stem density, number of stems greater than 1.8 m , number of stems greater than 3.7 m , height, and percent herbaceous cover for basal and stem-foliar herbicide treatment schemes at the end of the first conversion cycle 93
Table 21. P-values from testing the effects of first conversion cycle herbicide treatments on costs 95
Table 22. Mean costs for the first conversion cycle herbicide treatments 96
Pages
LIET OF TABLEB continued.
Table 23. P-values from testing the effects of second conversion cycle herbicide treatments on desirable and undesirable vegetation 97
Table 24. Mean desirable and tree stem density,number of stems greater than 1.8 m , number of stemsgreater than 3.7 m , height, and percent herbaceouscover for herbicide treatments at the end of thesecond conversion cycle98
Table 25. P-values from testing the effects of second conversion cycle herbicide treatments on costs 101
Table 26. Mean costs for the second conversion cycle herbicide treatments 102
Table 27. P-values from testing the effects of second conversion cycle herbicide and non-herbicide treatments on desirable vegetation and tree stems 103
Table 28. Mean desirable and tree stem density, number of stems greater than 1.8 m , number of stems greater than 3.7 m , and stem height for the second conversion cycle herbicide and non-herbicide treatments 104
Table 29. P-values from testing the effects of second conversion cycle herbicide and non-herbicide treatments on costs 107
Table 30. Mean costs for the second conversion cycle herbicide and non-herbicide treatments 108
Table 31. Summary of studies reporting short-term costs, tree density and shrub cover for various right-of-way vegetation management methods 111

TABLE OF CONTENTS

Page
LIET OF FIGURES
Figure 1. Map of New York State showing the location of the 21 study sites established in 1975 by the Empire State Electric Energy Research Corporation (ESEERCO, 1977a) 29
Figure 2. Permanent vegetation measurement plot establishment diagram showing subdivision into 3 m wide rectangular subplots extending from edge to edge of the right-of-way 34
Figure 3. Expected pattern of tree stem density on electric transmission line rights-of-way (Niering, 1958; Niering and Goodwin, 1974; Bramble et al., 1985) 39
Figure 4. Expected shifts in tree stem densityacross an electric transmission line rights-of-waybetween 1975 and 1991. HYP 1 -- decreased tree stemdensity. HYP 2 -- increased taper and decreasedtree stem density along centerline. HYP 3 --constant tree stem density. HYP 4-- increased treestem density40
Figure 5. Study plot layout for the initialclearing study (Study 3). The line with trianglesrepresents the Volney-Marcy 765 kV transmissionline. Numbers (e.g., 126-1B) along the line areplot designations70
Figure 6. Study plot layout for the first andsecond conversion cycle herbicide studies (Study 4).The line with triangles represents the Volney-Marcy765 kV transmission line. Numbers (e.g., 126-1B)along the line are plot designations75
Figure 7. study plot layout for the second conversion cycle non-herbicide study (Study 5). Theline with triangles represents the Volney-Marcy 765kV transmission line. Numbers (e.g., 126-4) alongthe line are plot designations78
Figure 8. Changes in management schemes, values and eras of powerline corridor vegetation management in New York through the 20th century 123

TABLE OF CONTENTS

Page
LIBT OF RPPENDICEG
Appendix Table 1. Management histories for the 21 rights-of-way used in Study 1 and study 2 136
Appendix Table 2. Common and scientific names of tree species found on the electric transmission line right-of-way plots in 1975, 1991, and 1992 141
Appendix Table 3. Number and height of each tree, by species, tallied from the 1975 study plot maps (ESEERCO, 1977a) by site, plot and subplot 143
Appendix Table 4. Height of each tree, by species, measured in the field in 1991 by site, plot and subplot 155
Appendix Table 5. Acronyms and common and scientific names of tree species found on the electric transmission line right-of-way plots in 1975, 1991, and 1992 185
Appendix Table 6. Plot sizes from Study 2 187
Appendix Table 7. Original vegetation and cost data from the initial clearing study -- study 3 189
Appendix Table 8. Original vegetation and cost data from the first conversion cycle study treatments -- Study 4 190
Appendix Table 9. Original vegetation and cost data from the second conversion cycle study treatments -- Study 4 191
Appendix Table 10. Original 1987 vegetation and cost data from the second conversion cycle non- herbicide study treatments -- Study 5 192
Appendix Table 11. Original 1988 and 1990 vegetation and cost data from the second conversion cycle non-herbicide study treatments -- Study 5 193
Appendix Table 12. Subplot treatment of grubbed plots, including costs and percent cover of seeded and native plants -- study 5 194

ABSTRACT

Nowak, Christopher, A. Effectiveness and other practical considerations of electric transmission line rights-ofway vegetation management in New York state. Typed and bound thesis, 198 pages, 31 tables, 8 figures, 1992.

A selective approach to managing vegetation on electric transmission line rights-of-way has been demonstrated to be effective in controlling tree populations, but only on small, experimental scales. There is little information on the long-term response of tree populations to selective removal at an operational management scale. We hypothesized that the operational selective removal of trees on rights-of-way can lead to relatively stable, low density populations of trees. Tree densities and species composition were compared on rights-of-way in New York State over a 16 -year period across a wide range of management schemes, environmental conditions and plant communities. In 1975, 58 permanent vegetation measurement plots, 0.03 to 0.08 ha in size, were established on 21 rights-of-way across New York. In 1991, trees $\geq 1 \mathrm{~m}$ height were remeasured on these plots. Tree densities in 1975 and 1991 were expressed as a function of relative distance across each right-of-way plot using a quadratic model. Sequentially estimated regression coefficients were compared between these periods using paired t-tests. Species composition was compared between periods using Morisita-Horn similarity coefficients. On rights-of-way where trees were periodically, selectively removed using herbicides, tree populations were observed at constant low density. There was a spatial redistribution of trees in 1991 compared to 1975, with fewer trees in the centerline area and more in the border areas along right-of-way edges in 1991. An increase in tree density was observed on rights-of-way that did not receive herbicide treatments to control trees, but had only aboveground portions of trees selectively removed using periodic hand cutting. Results of selective tree removal, with or without herbicides, did not vary as a function of site condition or forest region. Species composition generally did not change over the study period. Acer, Betula, Fraxinus, Populus, Prunus, and Quercus species were commonly present on all sites during 1975 and 1991. Red maple (Acer rubrum L.), white ash (Fraxinus americana L.) and quaking aspen (Populus tremuloides Michx.) were the most important species. Operational, selective removal of trees on rights-of-way, whereby both the above- and belowground portions of the plants are periodically killed and site disturbance minimized, can lead to the creation of relatively stable, compositionally constant, low density tree populations.

Other studies were initiated in 1982 with a goal of examining vegetation management method cost effectiveness during initial clearing and conversion phases. The objectives were to determine which herbicide application mode and method is most cost effective in accomplishing vegetation management objectives during these early right-of-way management phases. Additionally, cost effectiveness of grubbing or brush hogging was compared to that of basal and stem-foliar herbicide schemes during the second conversion cycle. Study duration was 8 years. For the initial clearing phase, clear or selective cutting with no herbicides was the most cost effective approach. For the first and second cycle during the conversion phase, nonselective and selective stem-foliar schemes were most cost effective. Herbicide schemes (stem-foliar and basal) were more cost effective than non-herbicide schemes (grubbing or brush hogging) during the second conversion cycle.

Christopher Anthony Nowak
Candidate for the degree of Doctor of Philosophy, December 18, 1992
Lawrence P. Abrahamson, Major Professor
Faculty of Forestry
State University of New York College of Environmental Science and Forestry, Syraguse, New York

INTRODUCTION

Abstract

Electric rights-of-way (ROWs) ${ }^{1}$ are essential to the safe and reliable transmission of electricity. Tall trees pose a threat to service reliability and safety by their potential to grow into the conductors. If a tree grows too close to a conductor, a ground-line fault will occur. Electricity will "flash" from the conductors through the trees to the ground, Utilities must periodically remove tree stems growing on transmission ROWs to avoid ground-line faults.

Managers have several methods for removing trees on ROWs. These methods differ in cost and effectiveness. Cost effectiveness is a measure of vegetation management success based on the relative economic production of right-of-way (ROW) values. Safety and reliability are critical values. Wildlife and aesthetics are ancillary values commonly produced with vegetation management on ROWs.

In New York, the selective use of herbicides has been a mandatory approach to vegetation management on ROWs over the last decade (de waal Malefyt, 1984). This approach is purported to be highly effective (Egler, 1953; Niering, 1958; Egler and Foote, 1975). Researchers and vegetation managers consider the use of herbicides to

[^0]be the most cost effective way to achieve ROW values; however, there is little objective information on the effectiveness and cost of this and other vegetation management schemes (Abrahamson et al., 1992).

Some customers and regulators prefer utilities reduce or eliminate the use of herbicides for ROW management, regardless of cost. In response, a few utilities in the Northeast have established system-wide programs that are restricted to non-herbicide methods such as hand cutting or brush hogging. Other utilities have increased the use of these methods over the past few years (Abrahamson et al., 1992), despite the fact that there is little information on the cost effectiveness of non-herbicide techniques relative to selective herbicide methods.

Five studies of vegetation management on electric transmission line ROWs in New York State were performed with a goal of determining effectiveness and cost of ROW vegetation management methods. Trends in vegetation management methods in New York were investigated using utility management records for 21 RoWs (Study 1), followed by a series of field studies conducted to determine long- and short-term effectiveness and costs for herbicide and non-herbicide ROW vegetation management methods. Study 2 is an examination of long-term effectiveness of operational ROW vegetation management based on 1991 remeasurement of 70 permanent vegetation measurement plots established in 1975 on 21 ROWs across New York State. Studies 3 and 4 were initiated in 1982

```
with a goal of examining vegetation management method
cost effectiveness during initial clearing and conversion
phases on a recently cleared ROW in Upstate New York. In
Study 5, cost effectiveness of brush hogging and
grubbing, both non-herbicide schemes, was examined
relative to the herbicide schemes from Study 4.
```


LITERATURE REVIEW

Definition of Electric Transmission Line Rights-of-way
Electric ROWs are strips of land, generally 30 to
300 m in width, used by the utilities to transmit electricity. They occupy a well-defined, clearly recognizable, and functionally important piece of the landscape (Forman and Godron, 1986).

In the U.S., there are over $1,000,000 \mathrm{~km}$ of electric transmission line ROWs (EEI, 1990 ${ }^{2}$). New York has 24,000 km of ROWs occupying 61,000 ha of land; about 36,000 ha are under some utility-oriented vegetation management program (J. de Waal Malefyt, 1991, personal communication).

Purpose of Electric Transmission Line Rights-of-way
The purpose of RoWs is to provide a corridor for the safe and reliable transmission of electricity. Tall trees can cause unsafe conditions and disrupt electricity transmission by growing or falling into the transmission wire security zone, which can include up to 7 m surrounding each conductor, depending on voltage. Tall trees are defined as any tree species that can attain a height that will allow it to enter the transmission wire

2 P. Martin, 1992, personal communication. Refers to the total of all aboveground electric transmission lines greater than 22 kV for investor owned, government owned, municipal system, state project, federal agency, and public power district sources for the U.S. This total excludes REA cooperatives.
security zone. In general, the minimum mature height of
a tall growing tree is 6.1 m (ESEERCO, 1984).
Goal of Right-of-way Vegetation ManagementIn New York, vegetation management on ROWs has beenclosely regulated since the late $1970 s$ (de Waal Malefyt,1984). In 1980, a regulatory opinion regardingvegetation management was implemented (NYS Public ServiceCommission, 1980b, Appendix A, p. 4):
The principal ROW management objective is (promoting) the growth of low-growing, relatively stable plant communities that are aesthetically appealing, beneficial to wildife, compatible with electrical system reliability requirements, and need relatively little maintenance over the life of a ROW.
In this definition, ROWs are prescribed as providing a set of broad values -- safety, reliability, wildife and aesthetics. Safety is not specifically included in the Public Service Commission's regulatory opinion, but is implied along with reliability requirements. Reliability and safety are tantamount. Economic concerns are implied by the statement regarding a "need (for) relatively little maintenance over the life of a ROW". Less maintenance means less management inputs and related costs.
The goal of ROW vegetation management is control of vegetation, which means creating and maintaining a relatively low population of trees. This is similar to the containment policy of weeds in agriculture (Auld et
al., 1987), where the weeds for ROWs are tall growing trees. Containment on RoWs means that tree species: 1) are restricted to the area outside of the ROW, 2) can continue to develop and increase in population outside the ROW, and 3) are acceptable in some areas of the ROW at some relatively low density.

Control of vegetation is defined as the suppression of undesirable plants to the point that economic impact is prevented (Ross and Lembi, 1985). The critical economic impact of trees on ROWs is in causing groundline faults. Vegetation control on ROWs in New York entails creating plant communities that minimize the potential for ground-line faults. Management centers on the cyclic selective removal of trees. Concomitantly, the growth of low stature plant communities, e.g., grasses, forbs, and shrubs, are promoted. Management methods that reduce trees and increase and subsequently maintain desirable plant communities are considered effective methods because they can minimize the potential for ground-line faults and maximize wildife and aesthetic values (Egler, 1953; Egler and Foote, 1975).

Vegetation Management Methods on Electric Transmission

 Line Rights-of-wayMethods of vegetation management on ROWs can be grouped into chemical, physical, biological, or ecological classes (adapted from Auld et al., 1987). The chemical group is solely herbicides; i.e.,
synthetically produced chemicals that can kill plants. This method has been practiced in New York since the 1950 s (Nowak et al., 1993).

Herbicides can be applied in a variety of ways and at different times in the life cycle of a plant. Methods of application vary as a function of entry point into a plant. Cut stump, basal, stem-foliar and foliar methods are common selective treatment methods in New York (Nowak et al., 1993). Cut stump treatment entails completely cutting the stem off near groundline and applying herbicide to the freshly cut cambial area of the stump. Basal is the application of herbicide to the lower bark area of a stem. An oil carrier is commonly used to aid the herbicide in penetrating the bark. Stem-foliar is the treatment of leaves, branches and upper stems. Foliar is the treatment of just foliage. Different herbicide formulations and concentrations are used with each method, matched to maximize the uptake, translocation and activity at the site of action.

Physical methods differ from the other classes in that no chemical or living organism is directly involved in the control of the ROW plant communities. Most of these "non-herbicide" methods do involve the use of synthetic chemicals, such as motor oil, gasoline, bar oil, etc. The most common physical methods operationally used on ROWs are hand cutting and brush hogging (Abrahamson et al., 1992). Hand cutting is the use of chainsaws or hand held brush cutters (small stems) to
cut undesirable vegetation at or near groundline.
Brush hogging is the use of a Hydro-Ax ${ }^{\text {TM }}$ or similar machine used to cut all vegetation near groundline.

Brush hogging equipment is similar to a rotary mower with large hydraulically driven fixed or hinged blades that can cut/shred all vegetation, including woody vegetation up to 10 cm diameter. Machines with flails rather than blades are included in brush hogging. Brush hogging is also commonly referred to as "mowing" (Galvin et al., 1979; Gangstad, 1989), but, since this could be confused with the conventional mowing that is done with a sickle bar or small rotary mower, brush hogging will be the term used in this thesis. There are other machines referred to as brush hogs which are not hydraulically driven, but create the same effect on the plant community. Grubbing is a physical vegetation management method. It entails the use of a bulldozer with a root rake to "grub" all vegetation, including roots, from a ROW site. Grubbed materials, including physical impediments such as boulders, are generally pushed to the edge of the ROW. The site is leveled, seeded, fertilized, and subsequentiy mowed or maintained by other methods.

Classically, the biological method is the use of insects or microorganisms to control weeds. The use of vertebrate animals and interference from plants has been referred to as a biological method, but these are ecological control methods. For ROW vegetation
management, use of allelochemics, mycoherbicides and bacterial herbicides are potential biological controls (Tillman, 1984).

Ecological methods include the use of plants or the use of animals to control undesirable plants, including the use of competing desirable plants. Methods that increase the relative competitive ability of desirable plants on Rows are included in ecological control methods.

Physical, chemical, and ecological control methods are commonly integrated. The biological control method is not operationally viable. In New York, the selective use of herbicides is a combination of chemical and at times mechanical (e.g., cut stump) methods with ecological methods. Cut stump treatments integrate mechanical, chemical and ecological control. The selective removal of trees fosters the development of low stature ROW plant communities, which then compete with residual and new trees (Niering and Goodwin, 1974).

Ecological Bases for Vegetation Management on Electric Transmission Line Rights-of-way

Presence of trees on ROWs is a function of two factors: 1) management method, which can be viewed as differing by intensity, timing and frequency of disturbance, and, 2) species on the site now, on the site in the past, or capable of invading from adjacent forest lands. These two factors interact to initiate a particular successional pathway for a site. Herbaceous,
shrub or mixed woody pathways are generally recognized results of different $R O W$ vegetation management programs (Galvin et al., 1979; Bramble et al., 1991).

The shrub pathway is most preferred on ROWs because shrubs are generally the most stable low stature plant community (Egler and Foote, 1975). These communities also provide high wildife (Bramble et al., 1985), aesthetic (Kenfield, 1966, 1991), and general conservation value (Niering, 1958).

Relative stability of ROW shrub communities has been attributed to the occupation of space and utilization of site resources left after the selective removal of trees. The subsequent invasion and establishment of trees is reduced through interference and other processes (Pickett et al., 1987; Pickett and McDonnell, 1989). Herbivory may be an important process in reducing tree presence on ROWs and maintaining stability of ROW plant communities. Deer browsing of trees is prominent on ROWs (Bramble et al., 1985; Kays et al., 1987; Hyman et al., 1991). Small mammals may also have a significant impact on tree dynamics through seed predation and seedling herbivory (Hyman et al., 1991; Luken et al., 1992b).

The shrub pathway approach for ROW vegetation management was first proposed nearly 40 years ago (Egler, 1953), with numerous subsequent repropositions (Niering, 1958; Kenfield, 1966; Egler and Foote, 1975; Egler, 1981; Daar, 1991). It is prevalent in the Northeastern U.S.,
but has yet to be accepted in other parts of the country (Daar, 1991).

The Shrub Stability Approach and Eqler's Initial Floristic Composition

The shrub pathway approach, or shrub stability approach" (sensu Niering, 1974, p. xiv in Egler and Foote, 1975), is historically based on Egler's Initial Floristic Composition (IFC) theory (Egler, 1954). The classical pattern of successional stages, where oldfields proceed from abandonment through forb, grassland, shrubland, and forest stages, is described in IFC theory as a function of stochastic processes associated with the arrival of propagules, coupled with the differential expression of plant dominance at various stages due to life history characteristics (Egler 1954; Finegan 1984). A key premise for IFC theory as a basis for the shrub approach as proposed by Egler is that propagules of each successional stage are mostly present, or arrive on the site, soon after abandonment. While propagules continue to arrive on the site during each stage, most of the vegetation present at each stage is a result of an "unfolding of that which was determined at the start" (Egler, 1954). By removing the "unfolded" forest stage, relatively stable residual plant communities are created.

In developing the IFC theory, Egler found that herbicides could be used to selectively kill both aboveand belowground tree portions, yet cause relatively little disturbance to the surrounding vegetation (Egler,

1946, 1947, 1948). Subsequently, Egler and others observed relatively stable pre-forest stage plant communities when, through various circumstances, the forest stage was "missing" (Pound and Egler, 1953; Niering and Egler, 1955; Niering et al., 1986). The effects of selective herbicide use, and the observed vegetation dynamics on sites without trees, apparently was the basis for Egler proposing that the selective removal of trees would lead to the creation of relatively stable, desirable ROW plant communities (Egler, 1953).

Further Considerations of Egler's Initial Floristic Composition as a Basis for the Shrub Approach to Right-of-way Vegetation Management

Egler (1954) presented two views of old-field succession, describing clement's classical theory as Relay Floristic and his own theory as Initial floristic Composition. The important difference between the two for ROW vegetation management is the timing of the invasion of trees. In Relay floristics, vegetation development in old-fields progresses from abandonment through time as distinct stages, or waves, of plant communities: first annual weeds, then grasses, large forbs, shrubs, and finally, trees. Each successive stage becomes established only after the preceding stage altered the site in such a way as to prevent its own reestablishment and at the same time, facilitate the establishment of the next stage. Egler proposed that another more important factor existed for old-field
development. Abandoned land, having received an initial load of propagules, develops its vegetative cover from this initial load (Egler, 1954). The observed stages of secondary succession simply are a consequence of the different growth rates of the plants involved (life history characteristics) and competition (Shugart, 1984). Drury and Nisbet (1973) supported Egler's IFC theory with an extensive literature search.
Egler restricted IFC to being applicable only in mesic plant communities (this restriction is apparent only after reading Egler, 1977, p. 159-161) that develop in the absence of non-plant biotic influences (e.g., no interaction of animals with plants) and without disturbance subsequent to the initiation of succession (Egler, 1954). Overextension of IFC beyond these restrictions to all ROW situations has been commonplace (Egler, 1953; Niering and Goodwin, 1974; Dreyer and Niering, 1986; Niering et al., 1986; Daar, 1991). This overextension, or misinterpretation, is also prevalent even in the most important oft cited reviews of vegetation development (Drury and Nisbet, 1973; Connell and Slatyer, 1977; Finegan, 1984).
Modern views of vegetation dynamics and plant succession incorporate Egler's restrictions on disturbance, site conditions, and organism interaction as important causal factors of vegetation dynamics (MacMahon, 1980; Shugart, 1984; Pickett et al., 1987,

Niering, 1987; Walker and Chapin, 1987; Pickett and McDonnell, 1989). Egler's IFC theory is not rejected with the modern view. It is, however, kept in its original context as a small part of a larger understanding.

Egler's IFC has been used as the sole basis for the shrub stability approach to ROW vegetation management (Egler, and Foote, 1975; Daar, 1991). But, IFC has its limits in this regard. Because RoWs are comprised of wide gradients of site conditions with varied degrees of animal interactions and anthropic disturbance, Egler's restrictions on IFC make it untenable for general use as a theoretical base for understanding vegetation dynamics of ROWs.

Modern vegetation dynamics theory provides a guiding paradigm for understanding ROW vegetation dynamics. This theory is based on a hierarchical organization (O'Neill et al., 1986; Urban et al., 1987) of causes and processes (Pickett and McDonnell, 1989). It describes vegetation dynamics as a function of three main processes: community level site availability, species availability, and species performance. The processes can be decomposed into component causes, some of which are characteristics of the organism of the community, while others are features of the environment (Pickett and McDonnell, 1989). It is these component causes that control vegetation dynamics, and specifically the relative stability, of vegetation on ROWs. Stability will vary as
a function of disturbance (size, severity, and dispersion), availability of tree and desirable species propagules, environmental constraints, autecology and interactions between trees and desirable plant, and between biotic and abiotic factors.

PREFACE

This study is a prelude to Study 2. It is a summary of the vegetation management trends in New York State using the management history data from Study 2 sites.

INTRODUCTION

General trends of ROW vegetation management methods for the Northeastern U.S. have often been simply cited -no herbicides before the 1950 s , broadcast use of herbicides from the 1950 s through the 1970 s, and slow integration of the selective use of herbicides into the mainstream of operational practice since the 19505 (Egler, 1953; Niering, 1958; Egler and Foote, 1975; Niering and Goodwin, 1974; Egler, 1981). There have been no objective reviews of vegetation management trends in New York or elsewhere in the Northeast.

The study objective was to examine vegetation management trends on electric transmission line ROWs in New York State over the past $80+$ years. Establishing a pattern of selective herbicide use over the past decade was important for study 2.

MATERIALS AND METHODS

Management histories of 70 permanent vegetation measurement plots on 21 ROWs were constructed in 1975 by the Empire State Electric Energy Research Corporation (ESEERCO, 1977a). These histories were updated in 1991 and 1992 by contacting the seven utilities in New York State (Appendix Table 1).

Trends of vegetation management were based on a decade by decade tally of management schemes and herbicide formulations using the management history data (Appendix Table 1).

Prior to the 1980s, methods of herbicide treatment (e.g., basal vs. stem-foliar vs. helicopter) were commonly reported without documenting a specific herbicide formulation. Therefore, in order to generate meaningful trends in herbicide use, herbicides were grouped within mechanism of action classes (after Warren, 1976; see Table 1). Mechanism of action is the activity of the herbicide within a plant that leads directly to its death (Ashton and Crafts, 1981). Other Row herbicide formulations not part of the study site histories but used on New York ROWs would be grouped within these classes; therefore, a lack of complete herbicide formulation information does not preclude a general trend analysis of herbicide use.

The trend analysis is divided into two sections: initial clearing and post-clearing. This division is appropriate because there are different plant communities
Table 1. Classification of electric
transmission line right-of-way herbicides byprimary mechanism of action.a
Growth Regulators:
Phenoxy acetic acids
2,4-D
2,4,5-T
Phenoxy propionic acids
dichlorprop
silvex
Picolinic acid and related compounds
picloram
triclopyr
Benzoic acids
dicamba
Inhibitors of Amino Acid Synthesis:
fosamine ${ }^{\text {b }}$
glyphosate
Sulfonylureas
metsulfuron methyl
Imidazolinones
imazapyr
Dessication and Plasmolysis: C
ammonium sulfamate
a Adapted from Warren (1975) and Astonand Crafts (1981).
b Categorized as an amino acid synthesisinhibitor by Newton and Knight (1981).
C As defined by Gangstad (1989).
which usually require different management schemes during each phase. Initial clearing is performed prior to or during transmission facilities construction. Mature forests and abandoned agricultural fields at various stages of successional development are common plant commities. Post-clearing is performed the year during or soon after initial clearing, and periodically every one to 15 years thereafter. The plant communities are generally comprised of forbs, shrubs, and short trees in various combinations, depending on past management practice (Bramble et al., 1991).

Each section outlines trends in treatment mode (nonselective or broadcast versus selective), treatment method, and herbicide use. Treatment mode and method, in combination, make up the vegetation management scheme (Nowak et al., 1992).

An important assumption for this study is that the 21 study sites are representative ROWs in New York State. Given that there are over $24,000 \mathrm{~km}$ of ROWs in New York, and only 30 km of ROWs included in this evaluation, this assumption appears tenuous. The sites do represent a wide range of site conditions and past management practice. They were originally chosen to represent all of the utilities, forest regions, and physiographic areas of New York State (ESEERCO, 1977a). Additionally, study plots within each site were generally chosen to represent hydric, mesic and xeric conditions (Egler, 1977; ESEERCO, 1977a). Since the purpose of this evaluation is to
present generalized trends for management and provide a foundation of information for study 2 , these study sites are adequate and representative of New York State.

Tables 1,2 and 3 serve as cross-references of groups, classes, common names, trade names, application methods, and decades of use of ROW herbicides referenced in this study.

RESULTS AND DISCUSSION

Initial Clearing Trends of Vegetation Management on Electric Transmission Line Rights-of-way in New York State

Treatment mode. There was no clear pattern for initial clearing treatment mode, although we can speculate that prior to the 1950 s a "cut all that is cuttable" (Egler and Foote, 1975) approach was likely used. Since then, a more selective approach has been used whereby only tall growing trees are cut.

Treatment method. From 1900 though the 1950s, hand cutting and bulldozing were prevalent management practices for clearing vegetation on RoWs in New York State. With the advent of the phenoxy herbicides in the 1950s, cut stump treatments gained broad use that has continued to the present. However, a trend may be developing for not using herbicides during initial clearing. Hand cutting or some other scheme of mechanical removal, followed one- or two growing seasons

Table 2. Herbicides used for vegetation management on 21 right-of-way study sites (Studies 1 and 2) over the past four decades.

Trade name(s)	Common name (s)	Application method	Decade(s) of use
2,4,5-7	2,4,5-7	cut stump, stem-foliar (alone or with 2,4-0), conventional bark basal	50s, 60s, 70s
Access	picloram and triclopyr	conventionat bark basal (with Garlon 4)	80 s
Accord	glyphosate	```foliar (alone or with Escort)```	90 s
Ammate	ammonium sulfamate	stem-foliar	$60 \mathrm{~s}, 70 \mathrm{~s}$
Arsenal	imszapyr	foliar	90 s
Banvel 520	dicanta and 2,4-0	conventional bark basal (alone and with Garlon 4)	70s, 80s
Chopper	imazapyr	low volume basal	90 s
Compadre	glyphosate	cut stump	905
Dacamine 20/2T	2,4-D and 2,4,5-T	stem-foliar	50s
Escort	metsulfuron methyl	foliar (with Accord)	905
Esteron		stem-foliar	50s. 60 s
Esteron 245	2,4,5-1	cut stump	50s, 60s
Garton 3A	triclopyr	stem-foliar (with Tordon 101)	80 s
Garton 4	"	```conventional bark basal, cut stump (with Heedone CB), sten-foliar (alone or with Tordon 101)```	80 s
Krenite	fosamine ammonium	stem-foliar	70s, 80s
Krenite S	" *	stem-foliar	805
Silvex	2,4,5-TP	stem-foliar, cut stump, besel	70 s
Tordon 101	2,4-0 and picloram	stem-foliar <atone and with Garlon 3A, Garton 4 or silvex)	50s, 60s, $70 \mathrm{~s}, 80 \mathrm{~s}$
Iordon 155	2,4.0 and 2,4,5-1	conventional bark besal, cut sturp	60s, 70s
Tordon RTU	2,4-D and picloram	cut stump	90 s
Weedone CB	2,4.0 and dichlorprop	low volume basal, cut stump	60s. 80 s

rable 3. List of herbicides currently commonly used to manage vegetation on electric transmission tine rights-of-may in Hew York stere.

Comnon name	Trade name	Year first registered in Wew York ${ }^{\text {a }}$	Common application me thod	Mamufacturer ${ }^{\text {b }}$
2,4-0	Tordon 101, Tordon RTU	1953	cut stump, stem-foliar	Dowelanco
fosamine	Krenite	1980	foliar	Oupont
olyphosate	Accord	1982	foliar	Monsanto
imazapyr	Chopper	1984	cut stump, basal	American Cyanmid
	Arsenal		faliar	
picloram	Tordon 101, Tordon RTU	1965	cut stump, stem-foliar	Dowelanco
triclopyr	Garlon 4	1979	besal, stem-foliar	Dowelanco

${ }^{\text {a }}$ Source: T.A. Gudlewski (1992, WYS Dept. Env. Conserv., sureau of Pesticides, pers. conm.) and L.W. Jackson (1991, WYS Public Service Commission, pers. conm.).
b
Company addresses: E.I. Dupont de Hemours and Company, Hitmington, Delaware 19898; Monsanto Company Agricultural Products, St. Louis, Missouri 63167; American Cyanamid Conpeny, Woyme, Mew Jersey 07470; Dowelanco, Indianapolis, Indiana 46268-1189.
later with a selective stem-foliar or basal herbicide scheme, has gained increased use over the past two decades. This approach is cost effective (Abrahamson et al., 1991a, Nowak et al., 1992). It is similar to operational practice in other areas of the Eastern U.S. (Foreback, 1971).

Herbicide use. From the 1950s through the 1970s, 2,4-D and $2,4,5-T$ were commonly used in mixtures, or $2,4,5-T$ was used alone, as a cut stump treatment. In the 1970s, Tordon 101^{TM} (a mixture of $2,4-\mathrm{D}$ and picloram) was a common cut stump treatment. over the past few years, glyphosate and imazapyr have been used for stump treatment.

Post-clearing Trends of Vegetation Management on Electric Transmission Line Rights-of-way in New York State

Treatment mode. From the early 1900 s through the 1950s, hand cutting and mechanical reclearing were the only management schemes used to maintain ROW vegetation. From the 1950 s to the 1970 s, broadcast application of herbicides with helicopters was commonly used. The practice of using helicopters to broadcast spray herbicides was essentially discontinued in the early $1980 s$ due to restrictions associated with a series of State regulations on the use of aerial spraying of ROWs (de Waal Malefyt, 1984).

Since the late $1970 s-e a r l y$ 1980s, management of vegetation on powerline corridors in New York state has
centered around the selective use of herbicides.
Over the past decade there has been an increase in selective and nonselective mechanical treatments. Six of the 21 sites received either brush hogging, grub and seeding, or hand cutting over the total study area during the past 7 years. Three of these sites were treated with brush hogging or brush hogging followed by grub and seeding since 1990.

Treatment method, Basal, cut stump, and selective stemfoliar application of herbicides were used in New York since the $1960 s$, but these selective techniques did not gain widespread use until 1980, when the selective approach for using herbicides became regulation (de Waal Malefyt, 1984). These selective treatments were predominantly used in the $1980 s$ and early 1990s.

During the late $1980 s-e a r l y$ 1990s, there was an increase in the use of hand cutting without herbicides and nonselective mechanical treatment (e.g., brush hogging and grub and seeding) of ROWs. Hand cutting, predominantly used in the buffer areas around wetlands over the past decade (ESEERCO, 1991), was also used on upland areas on three sites.

Herbicide use. Herbicides have been prominently used to maintain ROW vegetation since the 1950 s. The phenoxy herbicides have been consistently used for the past four decades. Picolinic and benzoic acids were first used in the $1960 s$ (picloram, dicamba) and were expanded in the

1980s with the introduction of triclopyr. Ammate, the only inorganic ROW herbicide, was used in the 60 and 70s. The phenoxy herbicide $2,4,5-T$ was not used after 1979 due to federal restrictions on its use for ROW management (Davidson, 1980). Amino acid synthesis inhibitors were first used in the late 1970s-early 1980s (fosamine). During the 1990s, other amino acid synthesis inhibitors (glyphosate, metsulfuron methyl, imazapyr) became commonly used.

Summary

Vegetation has been managed on ROWs in New York since the early 1900s. Prior to the 1940s, when technologies to create and effectively use chemicals to control vegetation were developed, the management of ROWs was largely performed by mechanical means. Repetitive hand cutting, brush hogging, and bull dozing were featured operations. In the 1950s, an alternative approach became available with the advent of phenoxy herbicides (2,4,5-T and 2,4-D). Other herbicides preceded the phenoxies (e.g., ammonium sulfamate), but it was primarily the synthetic organic herbicides that revolutionized ROW vegetation management. Herbicides have been prominently used on New York RoWs since the 1950s. Aerial spraying of ROWs with these herbicides was prevalently used from the 1950 s through the early 1980 s. In 1980, the selective use of herbicide was mandated by regulation. A majority of ROWs in New York did receive
selective herbicide treatment during the 1980 s and 1990 s using several different herbicides (Table 3). An
increase in hand cutting and other non-herbicide methods was observed over the past 5 years.

GTUDY 2: GELECTIVE VEGETATION MANAGEMENT ON ELECTRIC TRANSMISSION LINE RIGHTS-OF-WAY IN NEW YORR BTATE: TREE DENSITY AND SPECIES COMPOSITION CHANGES FROM 1975 TO 1991

PREFACE

Study 2 is the larger part of the project introduced in study 1. study 1 was a review of the management history data from study 2. Study 2 is an examination of tree density changes between 1975 and 1991 on ROWs across New York.

INTRODUCTION

A selective approach to managing vegetation on electric transmission line ROWs, whereby trees are selectively removed, and low-stature plant communities promoted, has been the mandated approach in New York since 1980 (de Waal Malefyt, 1980). This approach to ROW vegetation management is common throughout the Northeastern U.S. (Abrahamson et al., 1992). It has been demonstrated to be effective in controlling tree populations, but only by using herbicides and only on small experimental scales (e.g., Bramble and Byrnes, 1983; ESEERCO, 1985). There is little information on the long-term response of tree populations on ROWs to selective removal at an operational scale. The objective of this study was to determine whether operational, selective removal of trees can lead to relatively stable, low density populations of trees on electric transmission line ROWs.

MATERIALS AND METHODS

Study Site Descriptions

Twenty-one ROW study sites were chosen in 1975 to represent forest regions across New York (Figure 1 and Table 4; from ESEERCO, 1977a,b). In general, within each site, at least one permanent vegetation measurement plot was established in hydric, mesic and xeric conditions for a total of 700.03 to 0.08 ha plots on the 21 ROWs (Table 4). While each plot had varied vegetation management history (Study 1; Appendix Table 1), the use of herbicides to selectively remove trees predominated over the past two decades (Study 1; Nowak et al., 1993). Different methods, e.g., cut stump, basal, stem-foliar, and foliar, were used on the 43 plots that received herbicides to selectively remove trees (Appendix Table 1). These methods were collectively considered representative of the selective approach for using herbicides to control tree populations. All of these methods have been used to selectively remove trees and concomitantly promote low stature desirable plant communities on ROWs (Bramble et al., 1991; ESEERCO, 1985; Nowak et al., 1992). Plots that did not receive herbicides had trees periodically, selectively removed using hand cutting from 1975 to 1991 (Table 4).

organization of the 1975 Data

The 1975 data were obtained from pencil and ink mylar maps of the sites and plots. These maps were

Figure 1. Map of New York State showing the location of the 21 gtudy aites established in 1975 by the Empire State Electric Energy Research Corporation (ESEERCO, 1977a), Site numbers designate the following transmisaion lines and utilities:

```
    1 -- Sprainbrook to Eastview, Consolidated Edison Company;
    2 -- Ramapo to Hudson River (PJM-West), Orange and Rockland Utilities, Inc. (ORU);
    3 -- Southern Tier Line 77, ORU;
    4 -- Hillburn to Shoemaker, ORU;
    5 -- Poughkeepsie to Ohioville, Central Hudson Gas and Electric Company;
    6 -- Porter to Rotterdam, Niagara Mohawk Power Corporation (NMPC);
    8 -- Hancock to Stilesville, New York State Electric and Gas Corporation (NYSEG);
    9 -- Hillside to Oakdale, NYSEG;
10 -- Falconer to Homer Hill, NMPC;
11 -- Station 82 to Station 162, Rochester Gas and Electric Company (RG&E);
12 -- Mortimer to Long Branch (formerly Lockport to Solvay), NMPC;
13 -- Station 121 to Station 13A, RG&E;
14 -- Oswego to Volney, NMPC;
15 -- Oswego to Clay %4, NMPC;
16 -- National Lead Line, NMPC;
17 -- Lyon Mountain to Saranac, NYSEG;
18 -- Moses to Wiliis (formerly Moses to Plattsburg), NYPA;
19 -- Moses to Adirondack, NYPA;
20 -- Adirondack to Porter, NMPC
21 -- Fitzpatrick to Edic, NYPA;
22 -- Gardenville to Dunkirk, NMPC.
```

Table 4. Study site and plot descriptions for the comparison of tree density on electric transmission line rights-of-way between 1975 and 1991.

Site	$\begin{gathered} 1991 \\ \text { right- } \\ \text { of } \\ \text { way } \\ \text { age } \end{gathered}$	Plot	Moisture regime ${ }^{\text {a }}$	Treatment ${ }^{\text {b }}$	Forest regionc
1	36	1	mesic	herbicide	New England
		3	mesic		
2	20	1	hydric	"	"
		2	mesic	"	"
		3	xeric	"	"
3	18	2	mesic	"	"
		3	xeric	'	"
4	66	1	xeric	"	"
		2	mesic	"	"
		3	hydric	"	" "
5	75	1	hydric	hand cut	Appalachian
		2	xeric		
		3	xeric	"	"
		4	hydric	"	"
		5	mesic	" "	"
6	44	1	hydric	" "	" "
		2	mesic	herbicide	" "
		3	xeric	"	" "
		4	xeric	"	" "
		5	mesic	"	11
8	29	1	hydric	"	" 1
		2	mesic	"	" "
		3	mesic	"	" "
		4	xeric	"	" "
		5	xeric	"	"
9	24	1	mesic	"	" "
		2	mesic	"	" ${ }^{\prime \prime}$
		5	mesic	"	" $\quad 1$
10	27	2	hydric	"	" "
11	29	1		hand cut	Lake Plain
		2	hydric	" "	" "
		3	mesic	" "	" ${ }^{\prime \prime}$
13	24	1	hydric	herbicide	"
		2	mesic	"	"
14	17	1	hydric	"	" "
		2	mesic	"	" "
15	52	1	xeric	"	" "
		2	mesic	"	" "
16	49	1	mesic	hand cut	Adirondack
		2	hydric	" "	" 1
		3	xeric	" ${ }^{\prime \prime}$	" \quad "
		5	mesic	" "	" "
		6	xeric	" "	" \quad

Table 4 continued.

Site	1991 ROW age	Plot	Moisture regime ${ }^{\text {a }}$	Treatment ${ }^{\text {b }}$	Forest regionc
17	33	1	hydric	herbicide	Adirondack
		2	mesic	H	" ${ }^{\prime \prime}$
		3	mesic	H	11
		4	hydric	"	"
18	34	3	xeric	11	11
19	49	1	mesic	11	${ }^{11}$
		2	hydric	"	"
20	34	1	hydric	11	" 1
		2	mesic	"	" 1
21	20	1	hydric	11	" \quad \%
		2	mesic	"	H ${ }^{\text {H }}$
		3	mesic	hand cut	n \quad "
22	31	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	mesic hydric	herbicide \#	Lake Plain " "

a Classification as hydric, mesic, or xeric was done by ESEERCO (1977a) based on soil and plant community characteristics.
b Treatment schemes represent those used between 1975 and 1991.
c Forest regions were defined after stout (1958), as presented in ESEERCO (1977a).
presented in the 1975 study final report (ESEERCO, 1977a,b). Location and identification of individual tree stems by species and height are on these maps.

Plot Reestablishment

Plots were reestablished in the field during mid- to late-summer 1991 and late-winter to late-spring 1992 using plot edge to transmission tower distance information from the 1975 maps. Plot edges across a ROW were perpendicular to centerline. A hand compass and tape were used to reestablish plot corners. Steel rebar (1 cm diameter, 1 m length), buried so that only 15 cm was aboveground, was used to remark the corners.

Fifty-eight of the 70 plots were reestablished (Table 5). Plots were not reestablished if they were disturbed by agents not directly related to vegetation management activities or if they were managed using nonselective techniques (e.g., brush hogging, grubbing). One plot was discarded because mapping errors made it impossible to reestablish the plot in the field with sufficient accuracy $(\pm 5-10 \%$ of the distance from the referenced right-of-way structure to the plot edge; Table 5). After establishing the corners, each plot was temporarily divided into 3 m wide rectangular subplots with the long axis of the subplot rectangles parallel to centerline (Figure 2).

In 1975, plot corners were marked with wooden stakes. Only 11 of these wooden stakes were found out of a possible 280 (Table 6). Reestablishment of these

Table 5. List of plots excluded from Study 2.

Site	Plot	Reason for exclusiona
1	2	Mapping errors on the 1975 site and plot maps
3	1	Plot flooded with water due to beaver activity
9	3	$"$
9	4	One-half of plot converted to a horse pasture
10	1	Plot brush hogged in 1991
10	3	" "
12	1	Plot grub and seeded in 1991
12	2	"
15	3	Plot used for cattle grazing
16	4	Plot flooded with water due to beaver activity
18	1	Plot brush hogged in 1991
18	2	"

a plots were not reestablished if they were disturbed in a large scale manner by agents not directly related to vegetation management activites or if they were managed nonselectively. Plot 2 on Site 1 was discarded because of mapping errors which made it impossible to reestablish the plot in the field with sufficient accuracy ($\pm 5-10 \%$ of the distance from the referenced right-of-way structure to the plot edge).

LEGEND

© ROW CENTERLINE

Figure 2. Permanent vegetation measurement plot establishment diagram showing subdivision into 3 m wide rectangular subplots extending from edge to edge of the right-of-way.

corners in 1991 or 1992 showed that the original location of the plots was not exactly as described on the 1975 maps. Along the axis perpendicular to centerline, the wooden stakes were off, on average, by 2.0 m (Table 6). Along the axis parallel to centerline, the stakes were off 1.8 m from the described location (Table 6). In the field, we observed that the location of the plots was at times too far into the surrounding woods. Given this observation and measured distances to the 1975 wooden stakes, we concluded that the location of plots in 1991 and 1992 may not have been exactly overlain on the 1975 plot locations. In order to control potential confounding effects due to 1975 mapping or field measurement inaccuracies, the comparison of 1975 with 1991 tree density on each plot was done with the end subplots from each plot excluded from the data.

Tree Measurement

A list of tree species that are operationally removed from Rows during routine management in New York was constructed based on the 1975 plot maps, Niagara Mohawk Power Corporation's "List of trees to be trimmed, removed, or sprayed" (NMPC, 1989), and the 1991 and 1992 field surveys. A total of 49 tree species were found on the study plots (Appendix Table 2).

Amelanchier arborea, Betula populifolia, carpinus caroliniana, ostrya virqiniana, and Prunus pensylvanica are commonly not removed from ROWs under specific site
and transmission line conditions, e.g., areas located along the ROW edges, or across the total width of ROWs on high voltage lines (e.g., $\geq 345 \mathrm{kV}$; NMPC, 1989). In order to control potential confounding effects due to possible inconsistent management of these five species across sites, the comparison of 1975 with 1991 tree density on each plot was done with these five species removed from the data. Picea mariana and Quercus muehlenbergii were found only in the end subplots of one plot each; hence, these species were also excluded from the analysis.

All tree stems $\geq 1 \mathrm{~m}$ height were surveyed within each plot during the summer 1975 (ESEERCO, 1977a,b), late summer 1991 and late winter to late spring 1992, and identified by species and subplot location. A 1991 measurement point was used for comparing tree density differences with 1975.

Tree stems < 1 m height are listed on the 1975 maps; however, these smaller stems were not accurately surveyed in 1975 (H. Dale Freed, Niagara Mohawk Power Corporation, and T. Mayer, Baltimore Gas and Electric, 1991, pers. comm.). Comparisons between 1975 and 1991 were made only for tree stems $\geq 1 \mathrm{~m}$ height, as these were accurately surveyed during both periods.

A 1 m minimum height has been commonly used for measurement of trees on ROWs (Bramble and Byrnes 1983; Thibodeau and Nickerson, 1986). Trees of this size are of practical importance, as they may grow into the wire
security zone over the course of a treatment cycle.

Hypothesis Testing

The expected pattern of tree density on ROWs is Ushaped, with higher density along Row edges, tapered to lower density in the centerline area (Niering, 1958; Niering and Goodwin, 1974; Bramble et al., 1985; Figure 3). Tree density over the 16 -year study period (1975 to 1991) may have (see Figure 4):

HYP 1) evenly decreased across a ROW;
HYP 2) decreased under centerline and increased in taper along the ROW edges;

HYP 3) been constant across a ROW; or
HYP 4) increased across a ROW.

Except for HYP 2, the responses predicted by these hypotheses could be represented by linear models.

Tree density patterns were separately compared, with reference to these four hypotheses, between 1975 and 1991 within the two treatments groups -- selective removal of trees using herbicides versus selective removal of trees using hand cutting without herbicides. Site condition and forest region effects on tree density changes within each treatment group were examined by retesting hypotheses using data from plots grouped by moisture regime and forest region and contrasting P-values with the total treatment group comparisons.

RELATIVE DISTANCE

Figure 3. Expected pattern of tree stem density on electric transmission line rights-of-way (Niering, 1958; Niering and Goodwin, 1974; Bramble et al., 1985).

Figure 4. Expected shifts in tree stem density across an electric transmission line rights-of-way between 1975 and 1991. HYP 1 -- decreased tree stem density. HYP 2 -increased taper and decreased tree stem density along centerline. HYP 3 -- constant tree stem density. HYP 4 -- increased tree stem density.

Statistical Analyses

Regression methods were used to fit a quadratic model to the data from each period (1975 and 1991) for each plot to describe tree density patterns across a ROW:

$$
\begin{equation*}
\mathrm{Y}=\mathrm{B}_{0} \mathrm{X}_{0}+\mathrm{B}_{1} \mathrm{X}_{1}+\mathrm{B}_{2} \mathrm{X}_{1}^{2}+\mathrm{e} \tag{1}
\end{equation*}
$$

where Y is tree density (stems ha ${ }^{-1}$), X_{0} is equal to 1 , X_{1} is the relative distance to the center of a subplot from one ROW edge (edges of the ROW for this study were assigned values of 0 and 1.0 , centerline is 0.5$), B_{0}, B_{1}$, and B_{2} are the intercept, linear, and quadratic coefficients, and e is random error.

Model [1] was fit to the 1975 and 1991 data for each plot using ordinary least squares. Relative distance, the independent variable, was calculated for each subplot by dividing the distance to the center of a subplot by the total width of the plot (Appendix Tables 2 through 6). Tree density, recorded for each species within each subplot on a per hectare basis, was used as the dependent variable (Appendix Tables 2 through 6).

A repeated measure approach, as proposed by Meredith and Stehman (1991), was used to test equality of coefficients from the tree density regression equations between 1975 and 1991. Estimated regression coefficients from each plot for both 1975 and 1991 were used as secondary data for the analyses. These coefficients were obtained from sequential parameter estimates using PROC REG in SAS (SAS Institute, Inc., 1985). Models that
included only (from Model [1]):
$\mathrm{B}_{0}{ }^{*} \mathrm{X}_{0}$;
$\mathrm{B}_{0}{ }^{*} \mathrm{X}_{0}+\mathrm{B}_{1}{ }^{*} \mathrm{X}_{1}$; and
$\mathrm{B}_{0}{ }^{*} \mathrm{X}_{0}, \mathrm{~B}_{1}{ }^{*} \mathrm{X}_{1}$, and $\mathrm{B}_{2}{ }^{*} \mathrm{X}_{1}{ }^{2}$
were fit to the data from each plot for both 1975 and 1991. Parameters estimates from Models [2] and [3] are different than from Model [I] because they are sequential parameter estimates. For Models [2] and [3] these estimates are different than the estimates from Model [1]. Model [4] parameter estimates were also obtained using sequential parameter estimates, but the estimates are the same as from Model [1]. Estimated $\mathbf{B}_{0}{ }^{*}, B_{1}{ }^{*}$, and $\mathrm{B}_{2}{ }^{*}$ coefficients from Models [2], [3] and [4], respectively, were used as secondary data for the analysis. The $B_{0}{ }^{*}$ coefficient is the mean tree density, $B_{2}{ }^{*}$ is the linear coefficient of a simple linear regression model, and $\mathrm{B}_{2}{ }^{*}$ is the partial regression coefficient for the quadratic term. The advantage of the estimated sequential regression coefficients is that they are independent of each other, thus providing independent measures of the mean, linear, and curvature components of the response. Each coefficient was compared between 1975 and 1991 on a per plot basis using the secondary dataset and paired t-tests. A significance level (alpha) of 0.10 was used to interpret statistical significance of test results. In studies of an exploratory nature, such as

Study 2, a relatively high α-level is appropriate because the consequences of Type I and Type II errors were relatively low and the sample sizes for many of the tests were relatively low (Huberty, 1987).

Species Composition

Importance values were calculated separately for tree stems by species and genera as the sum of relative density and relative frequency.

Species composition on a genera basis was compared between periods by measuring β diversity between 1975 and 1991 for each plot. Morisita-Horn similarity coefficients were calculated (after Magurran, 1988):

$$
c_{M H}=\frac{2 \Sigma\left(a n_{i} \times b n_{i}\right)}{(d a+d b)(a N \times b N)}
$$

where $C_{M H}$ is the similarity coefficient, aN is the number of individuals on a plot (stems ha-1) in 1975, bN is the number of individuals on a plot (stems ha-1) in 1991; an a_{i} is the number of individuals in the ith species on a plot (stems ha-1) in 1975, $b n_{i}$ is the number of individuals in the ith species on a plot (stems ha-1) in 1991, da is the $\Sigma a n_{i}{ }^{2}$ divided by $a N^{2}$, and $d b$ is the $\Sigma b n_{i}{ }^{2}$ divided by $b N^{2}$. $C_{\text {MH }}$ varies from 0 to 1.00 ; a value of 1.00 indicates exactly the same species composition.

Species were grouped by genera to adjust for possible species identification differences between periods. For example, in 1975, all Fraxinus were identified as \underline{F}. americana (Table 7). In 1991, F. nigra

Table 7. Relative density, relative frequency, importance values and ranking of trees species found on electric transmission line rights-of-way in 1975 and 1991 for both herbicide and hand cut treatment plots.

Species	Herbicide treated plots								Hand cut treased plots							
	Relative density		Relative frequency		Importance ${ }^{\text {a }}$ value		Inportance value ranking		Relative density		Relative frequency		$\begin{aligned} & \text { Importance }{ }^{\text {a }} \\ & \text { value } \end{aligned}$		```Importance value ranking```	
	1975	1991	1975	1991	1975	1991	1975	1991	4975	1991	1975	1991	1975	1991	1975	1991
Abies batsemea	0.00	0.30	0.00	0.61	0.00	0.91	36	28	0.00	0.11	0.00	1.09	0.00	1.19	41	25
Acer negundo	0.00	0.17	0.00	0.61	0.00	0.78	40	30	0.00	0.00	0.00	0.00	0.00	0.00	39	31
Acer rubrum	24.50	22.16	15.66	13.41	40.16	35.57	1	1	9.83	16.70	10.26	11.96	20.08	28.66	3	2
Acer saccharimm	0.00	0.51	0.00	0.61	0.00	1.12	38	26	0.00	0.00	0.00	0.00	0.00	0.00	38	37
Acer saccharum	0.19	1.88	1.20	3.05	1.39	4.93	21	12	0.00	7.26	0.00	4.35	0.00	11.61	37	6
Aitanthus altissima	0.25	1.59	0.60	1.83	0.86	3.42	23	15	0.00	0.00	0.00	0.00	0.00	0.00	23	41
Berula alleghaniensis	1.92	4.26	2.41	2.44	4.33	6.70	10	9	5.91	4.29	6.41	3.26	12.32	7.55	8	7
Betula lenta	6.17	7.99	7.23	6.71	13.40	14.61	6	5	0.17	9.98	1.28	3.26	1.46	13.24	18	5
Betula papyrifera	0.19	2.68	1.20	2.44	1.40	5.12	20	11	0.00	0.09	0.00	1.09	0.00	1.18	33	27
Carya corgiformis	0.37	0.24	1.81	1.22	2.18	1.46	14	22	2.33	0.20	3.85	2.17	6.18	2.37	12	21
Carye glabra	0.06	0.00	0.60	0.00	0.66	0.00	29	41	0.00	0.00	0.00	0.00	0.00	0.00	31	40
Carya ovata	0.06	0.55	0.60	2.44	0.66	2.99	26	17	0.16	0.22	1.28	3.26	1.44	3.48	19	15
fogus grandifolia	0.24	0.82	1.81	3.05	2.05	3.87	15	14	0.00	0.07	0.00	2.17	0.00	2.25	29	23
fraximus emericana	16.57	8.99	12.65	10.98	29.22	19.97	3	3	19.35	23.23	11.54	10.87	30.88	34.09	1	1
Fraximus nigra	0.00	0.00	0.00	0.00	0.00	0.00	32	42	0.00	4.43	0.00	1.09	0.00	5.52	27	11
Fraximus pernsylvanica	0.00	4.78	0.00	2.44	0.00	7.22	31	8	0.00	2.65	0.00	3.26	0.00	5.91	20	8
Juglans cinerea	0.00	0.25	0.00	0.61	0.00	0.86	34	29	0.00	0.00	0.00	0.00	0.00	0.00	36	35
Jualans nigre	0.00	0.00	0.00	0.00	0.00	0.00	41	36	0.18	0.00	1.28	0.00	1.47	0.00	17	36
Juniperus virginiana	0.12	0.00	1.20	0.00	1.33	0.00	22	35	0.00	0.00	0.00	0.00	0.00	0.00	32	42
Liriodendron tulipifera	0.46	0.73	1.81	1.83	2.25	2.56	13	19	0.00	0.00	0.00	0.00	0.00	0.00	30	38
Picea glouce	0.00	0.00	0.00	0.00	0.00	0.00	42	34	0.00	0.11	0.00	1.09	0.00	1.19	28	26

Species	Kerbicide treated plots								Hand cut treated plots							
	Relative density		Relative frequency		$\begin{aligned} & \text { Importance }{ }^{\mathbf{a}} \\ & \text { value } \end{aligned}$		```Importance value ranking```		Relative density		Relative frequency		$\begin{aligned} & \text { Importance } \\ & \text { value } \end{aligned}$		Importance value ranking	
	1975	1991	1975	1991	1975	1991	1975	1991	1975	1991	1975	1991	1975	1991	1975	1991
Picea rubens	0.24	0.45	1.20	1.22	1.45	1.37	19	23	0.00	0.00	0.00	0.00	0.00	0.00	42	29
Pinus resinose	0.00	0.08	0.00	0.61	0.00	0.69	37	32	0.00	0.00	0.00	0.00	0.00	0.00	40	39
Pinus strobus	1.62	7.89	2.41	3.66	4.03	11.55	11	6	0.33	0.83	2.56	3.26	2.89	4.09	15	13
Pimus sylvestris	0.77	2.28	1.20	1.83	1.98	4.11	16	13	0.00	0.00	0.00	0.00	0.00	0.00	24	30
Papulus deltoides	0.96	0.00	0.60	0.00	1.56	0.00	17	39	0.00	0.04	0.00	1.09	0.00	1.13	35	28
Populus grandidentata	4.11	0.90	3.01	1.83	7.12	2.73	7	18	4.41	0.31	5.13	3.26	9.54	3.57	10	14
Populus tremuloides	18.53	12.56	10.84	8.54	29.37	21.09	2	2	4.30	8.76	7.69	9.78	11.99	18.54	9	4
Prunus serotina	8.07	9.78	9.64	7.93	17.71	17.71	5	4	8.03	11.36	10.26	9.78	18.29	21.15	4	3
Quercus atba	0.32	0.33	1.20	0.61	1.52	0.94	18	27	0.43	0.29	3.85	2.17	4.27	2.47	14	19
Quercus bicolor	0.00	0.08	0.00	0.61	0.00	0.69	30	33	0.00	0.00	0.00	0.00	0.00	0.00	34	32
Quercus coccinea	0.14	0.00	0.60	0.00	0.74	0.00	24	40	0.00	0.00	0.00	0.00	0.00	0.00	25	34
Quercus prinus	0.06	0.82	0.60	1.22	0.66	2.04	27	20	1.22	0.35	5.13	2.17	6.35	2.53	11	18
Quercus rubra	7.71	2.72	10.24	7.32	17.95	10.04	4	7	7.99	1.52	7.69	4.35	15.68	5.87	6	9
Ouercus velutina	0.06	2.20	0.60	4.27	0.66	6.47	28	10	0.00	0.66	0.00	2.17	0.00	2.83	21	17
Robinio psuedoacacia	4.39	0.67	1.81	1.22	6.19	1.89	8	21	10.82	2.24	2.56	1.09	13.38	3.33	7	16
Sassafras albidum	0.71	1.22	1.81	1.83	2.52	3.05	12	16	14.64	2.54	6.41	3.26	21.05	5.80	2	10
Thuja occidentalis	0.00	0.00	0.00	0.00	0.00	0.00	39	38	1.86	0.22	2.56	2.17	4.42	2.39	13	20
tilia mericana	0.06	0.00	0.60	0.00	0.66	0.00	25	37	0.38	0.39	1.28	1.09	1.66	1.48	16	24
Isure canadensis	0.00	0.15	0.00	1.22	0.00	1.37	35	24	0.00	0.00	0.00	0.00	0.00	0.00	26	33
Ulmus mericana	1.16	0.15	4.82	1.22	5.98	1.37	9	25	7.66	1.05	8.97	3.26	16.64	4.31	5	12
Utmats rubre	0.00	0.17	0.00	0.61	0.00	0.78	33	31	0.00	0.10	0.00	2.17	0.00	2.27	22	22

a Importance values were calculated as the sun of relative density and relative frequency.
and F. pennsylvanica were identified in addition to F. americana. Similarly, in 1975 Acer rubrum was the most commonly recorded Acer, whereas in 1991, A. nequndo, A. saccharinum, and A. saccharum were identified in addition to A. rubrum.

RESULTS

Tree Density Changes

Differences and similarities in regression equation coefficients were found between 1975 and 1991 for describing patterns of tree density across ROWs. For herbicide treated plots, the $B_{0}{ }^{*}$ coefficients were not different between periods (Tables 8 and 9); thus, total tree density was relatively constant between periods at 520 and 420 stems ha-1 for 1975 and 1991, respectively (Tables 8 and 9). The $\mathrm{B}_{1}{ }^{*}$ coefficients were not different between periods for herbicide treated plots (Tables 8 and 9), and were not different from zero for either 1975 or 1991 ($\alpha=0.10$). This indicates that the distribution of trees was even across the plots. The $\mathrm{B}_{\mathbf{2}}$ * coefficients increased from 1975 to 1991. An increase in $\mathrm{B}_{2}{ }^{*}$ and equal $\mathrm{B}_{0}{ }^{*}$ s indicated that a spatial
redistribution of trees occurred between 1975 and 1991 for plots that received selective herbicide treatments. Fewer trees were located in the ROW centerline and more trees located along the ROW edges in 1991 compared to 1975. Since the linear coefficient indicated an even

Table 8. Hean estimated regression coefficients and Morisita-Horn similarity coefficients for describing electric transmission line right-of-may tree density pattern and species composition for 1975 and 1991.

	Regression coefficients*							
	Sample$\text { size }{ }^{b}$	1975			1991			MorisitaHorn coefficient
Plot groups		$B_{0}{ }^{\prime \prime}$	B^{*}	$\mathrm{B}_{2}{ }^{\text {² }}$	$\mathrm{B}_{0}{ }^{*}$	$8_{1}{ }^{*}$	$\mathrm{B}_{2}{ }^{*}$	
Herbicide treated	43(36)	522	60.6	1642.2	421	-164.6	3511.9	0.65
		(84)	(188.3)	(600.0)	(60)	(249.0)	(982.5)	(0.05)
Site condition within the herbicide treated plot group:								
Hydric	12(10)	342	-164.5	1090.4	330	-342.9	1497.1	0.60
		$(141)^{\text {c }}$	(311.5)	(493.3)	(131)	(455.6)	(1349.9)	(0.12)
Mesic	22(20)	718	211.7	2356.7	477	-68.2	3469.4	0.65
		(133)	(318.8)	(1075.5)	(82)	(304.2)	(1385.0)	(0.07)
Xeric	$9(6)$	286	-8.7	631.3	406	-162.6	6302.4	0.74
		(67)	(208.8)	(909.4)	(120)	(757.2)	(2629.3)	(0.06)

Forest region within the herbicide treated plot group:

	Adirondsck	11(11)	$\begin{gathered} 391 \\ (112) \end{gathered}$	$\begin{gathered} 587.1 \\ (234.2) \end{gathered}$	$\begin{gathered} 2867.4 \\ (1612.5) \end{gathered}$	$\begin{gathered} 586 \\ (143) \end{gathered}$	$\begin{gathered} 672.1 \\ (740.0) \end{gathered}$	$\begin{gathered} 6453.1 \\ (2559.2) \end{gathered}$	$\begin{gathered} 0.65 \\ (0.09) \end{gathered}$
	Appalachian	13(12)	$\begin{gathered} 348 \\ (122) \end{gathered}$	$\begin{gathered} -20.0 \\ (290.7) \end{gathered}$	$\begin{gathered} 935.1 \\ (859.8) \end{gathered}$	$\begin{aligned} & 377 \\ & (99) \end{aligned}$	$\begin{aligned} & -926.6 \\ & (417.4) \end{aligned}$	$\begin{gathered} 4173.8 \\ (1682.8) \end{gathered}$	$\begin{gathered} 0.64 \\ (0.10) \end{gathered}$
	Lake Plain	$8(5)$	$\begin{gathered} 885 \\ (209) \end{gathered}$	$\begin{aligned} & -864.7 \\ & (661.6) \end{aligned}$	$\begin{aligned} & 1623.2 \\ & (995.1) \end{aligned}$	$\begin{gathered} 226 \\ \langle 142\rangle \end{gathered}$	$\begin{gathered} -96.0 \\ (173.2) \end{gathered}$	$\begin{aligned} & -740.5 \\ & (702.8) \end{aligned}$	$\begin{gathered} 0.66 \\ (0.18) \end{gathered}$
	New England	11(8)	$\begin{gathered} 595 \\ (213) \end{gathered}$	$\begin{gathered} 302.2 \\ (297.0) \end{gathered}$	$\begin{gathered} 1266.3 \\ (1238.6) \end{gathered}$	$\begin{aligned} & 449 \\ & \text { (9B) } \end{aligned}$	$\begin{aligned} & -150.5 \\ & (263.2) \end{aligned}$	$\begin{gathered} 2881.3 \\ (1661.3) \end{gathered}$	$\begin{gathered} 0.68 \\ (0.07) \end{gathered}$
Hand cut		15(13)	$\begin{aligned} & 1270 \\ & (366) \end{aligned}$	$\begin{gathered} 649.9 \\ (976.2) \end{gathered}$	$\begin{gathered} 3304.9 \\ (2381.6) \end{gathered}$	$\begin{aligned} & 4301 \\ & (874) \end{aligned}$	$\begin{gathered} -693.5 \\ (3078.8) \end{gathered}$	$\begin{gathered} 1331.9 \\ (9935.5) \end{gathered}$	$\begin{gathered} 0.58 \\ (0.07) \end{gathered}$

Site condition within the hand cut treated plot group:

Hydric	$5(6)$	754	1042.4	623.4	2993	-947.2	-11902.1	0.55	
		(432)	(660.1)	(3191.4)	(1423)	(1426.2)	(11035.7)	(0.18)	
Hesic	$6(6)$	1713	2416.9	826.4	6658	2746.2	-1804.6	0.60	
		(735)	(1918.7)	(3983.5)	(1376)	(7299.8)	(22054.4)	(0.09)	

Table 8 cont inued.

Site condition within the hand cut treated plot group:

| merie | $4(3)$ | 1250 | -2491.2 | 10374.5 | 2399 | -5535.9 | 21529.0 | 0.57 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(683) (1353.3)(4459.7) (748) (3939.5) (9812.0) (0.10)

Forest region within the hand cut treated plot group:

Adi rondack	$6(4)$	$\begin{aligned} & 184 \\ & (93) \end{aligned}$	$\begin{aligned} & -384.7 \\ & (293.5) \end{aligned}$	$\begin{gathered} 2556.9 \\ (1514.9) \end{gathered}$	$\begin{aligned} & 3014 \\ & (772) \end{aligned}$	$\begin{gathered} 897.8 \\ (3848.7) \end{gathered}$	$\begin{aligned} & -4008.9 \\ & (5329.5) \end{aligned}$	$\begin{gathered} 0.51 \\ (0.05) \end{gathered}$
Appalachian	6(6)	$\begin{aligned} & 1626 \\ & (484) \end{aligned}$	$\begin{gathered} -632.4 \\ (1303.6) \end{gathered}$	$\begin{gathered} 1091.1 \\ (5685.2) \end{gathered}$	$\begin{gathered} 3893 \\ (1231) \end{gathered}$	$\begin{aligned} & -6935.5 \\ & (3055.6) \end{aligned}$	$\begin{gathered} 17537.2 \\ (21597.6) \end{gathered}$	$\begin{gathered} 0.58 \\ (0.12) \end{gathered}$
Lake Plain	3(3)	$\begin{gathered} 2730 \\ (1043) \end{gathered}$	$\begin{gathered} 5283.8 \\ (3312.9) \end{gathered}$	$\begin{gathered} 9228.5 \\ (1561.4) \end{gathered}$	$\begin{gathered} 7689 \\ (2935) \end{gathered}$	$\begin{gathered} 8607.8 \\ (11237.3) \end{gathered}$	$\begin{aligned} & -20397.2 \\ & (21279.4) \end{aligned}$	$\begin{gathered} 0.66 \\ (0.17) \end{gathered}$

New Eng land 0

- A quadratic model was fit to the data from each period (1975 and 1991) for each plot to describe patterns of tree density: $Y=B_{0} X_{0}+B_{1} x_{1}+g_{2} x_{1}{ }^{2}+e$, where Y is tree density (stens has ${ }^{-1}$). X_{0} is equal to $1, X_{1}$ is the relative distance to the center of a subplot from one row edge cedges of the ROW for this study were assigned values of 0 and 1.0 , centerline is 0.5), B_{0}. B_{1}, and B_{2} are parameters to be estimated by regression solution, and e is random error. The coefficients were obtained as the sequential parameter estimates $\mathrm{B}_{0}{ }^{*}, \mathrm{~B}_{1}{ }^{*}$, end $\mathrm{B}_{2}{ }^{*}$ (SAS Institute, Inc., 1985).
b Values in parentheses are sample sizes for the Morisita-Morn coefficients; they bre lower than the regression equation sample size because Morisita-Horn coefficients could not be calculated if there were no trees on plot for either period.

C Values in parentheses below are the standard errors for each mean coefficient.

Table 9. p-values from paired t-test comparisons of coefficients from regression equations describing tree density across electric transmission line rights-of-way between 1975 and 1991.

Plot groups	Sample size	Regression coefficients ${ }^{\text {a }}$		
		$\mathrm{B}_{0}{ }^{\text {* }}$	$\mathrm{B}_{1}{ }^{*}$	$\mathrm{B}_{2}{ }^{\text {* }}$
Herbicide treated	43	0.31	0.39	0.08

Site condition within the herbicide treated plot group:

Hydric	12	0.93	0.72	0.81
Mesic	22	0.17	0.42	0.44
Xeric	9	0.39	0.83	0.06

Forest region within the herbicide treated plot group:

Adirondack	11	0.35	0.90	0.23
Appalachian	13	0.83	0.04	0.08
Lake Plain	8	0.01	0.25	0.12
New England	11	0.50	0.27	0.35
	15	<0.01	0.61	0.85

Hand cut
15
$<0.01 \quad 0.61$
0.85

Site condition within the hand cut treated plot group:

Hydric	5	0.09	0.15	0.20
Mesic	6	<0.01	0.96	0.94
Xeric	4	0.14	0.50	0.31

Forest region within the hand cut treated plot group:

Adirondack	6	0.01	0.74	0.26
Appalachian	6	0.07	0.13	0.51
Lake plain	3	0.12	0.72	0.27
New England	0	-	-	-

a A quadratic model was fit to the data from each period (1975 and 1991) for each plot to describe patterns of tree density: $Y=B_{0} X_{0}+B_{1} X_{1}+B_{2} X_{1}{ }^{2}+e$, where Y is tree density (stems $h a^{-1}$), X_{0} is equal to $l_{1} X_{1}$ is the relative distance to the center of a subplot from one ROW edge (edges of the ROW for this study were assigned values of 0 and 1.0, centerline is 0.5), $\mathrm{B}_{0}, \mathrm{~B}_{1}$, and B_{2} are parameters to be estimated by regression solution, and e is random error. The coefficients tested were the sequential parameter estimates $\mathrm{B}_{0}{ }^{*}, \mathrm{~B}_{1}{ }^{*}$, and $\mathrm{B}_{2}{ }^{*}$ (SAS Institute, Inc., 1985).
distribution of tree stems on the ROW plots, the redistribution of tree stems from 1975 to 1991 can be construed to have been equal on both sides of the ROWs. The $B_{0}{ }^{*}$ coefficient for hand cut plots was higher in 1991 compared to 1975 (Tables 8 and 9). Tree density averaged 1270 and 4300 stems ha-1 for 1975 and 1991, respectively (Table 8). There were no differences in B_{1} * and B_{2} * between 1975 and 1991 (Tables 8 and 9) and these coefficients were not different from zero ($\alpha=0.10$), indicating uniformly higher tree stem density across hand cut ROW plots in 1991 compared to 1975. The B_{0} * coefficients were on average greater chan zero ($\alpha=0.10$).

P-values from comparing regression coefficients between 1975 and 1991 were relatively constant across site condition and forest region within each treatment group (Table 9). Apparently, the effect of selective tree removal with herbicides or by hand cutting does not vary as a function of site condition or forest region. The few differences in p-values that did exist between the site condition and forest region comparisons, as compared with the treatment group comparisons, were likely unrelated to the comparison groups. The B_{0} * coefficient was lower in 1991 compared to 1975 on Lake Plain plots within the herbicide treatment group, but this difference is likely due to a difference in the years since the last herbicide treatment for 1975 and 1991 (Table 10). Average tree density, $\mathrm{B}_{0}{ }^{*}$, was positively correlated with the number of years since the

Table 10. Average age, years since the lagt selective tree removal treatment, and right-of-way width for the plots by treatment group, gite condition, and forest region.

Forest region within the herbicide treated plot group:

Adirondack	11	11	34	5	4	52.8
			(3)	(0.3)	(0.9)	(5.7)
Appalachian	13	13	32	3	6	61.6
			(2)	(0.6)	(0.9)	(5.2)
Lake plain	8	8	31	5	1	40.3
			(5)	(1.1)	(0.3)	(6.7)
New England	11	3	37	4	3	35.9
			(6)	(1.6)	(0.0)	(3.1)

$\begin{array}{lllllll}\text { Hand cut } & 15 & 9 & 51 & 4 & 7 & 27.1\end{array}$
(5) (1.2) (1.1) (2.5)

Site condition within the hand cut treated plot group:

Hydric	5	2	54	4	6	30.8
			(9)	(2.3)	(0.0)	(6.1)
Mesic	6	5	42	6	8	26.7
			(8)	(2.2)	(2.0)	(3.9)

Table 10 continued.

Plot group		$\frac{\text { Sample size }}{} \frac{19751991}{}$	$\begin{array}{r} 1991 \\ \text { age } \end{array}$	Years since last treatment		```Right- of- way width```
				1975	1991	
						= m -
Site condition within the hand cut treated plot group:						
	Keric	$4 \quad 2$	62	2	6	23.2
			(7)	(0.6)	(0.0)	(1.0)
Forest region within the hand cut treated plot group:						
Adirondack		$6 \quad 6$	44	3	8	26.2
			(5)	(0.2)	(1.7)	(3.9)
Appalachian		60	70	1	-	29.0
			(5)	(0.0)		(5.2)
Lake Plain		$3 \quad 3$	29	13	6	25.4
			(0)	(0.0)	(0.0)	(2.0)
New England		00	-	\cdots	-	-

last selective tree removal treatment (Table 11). In 1975, there was 880 stem ha-1 at 5 years after the previous treatment; in 1991 , there was 230 stems ha-1 at 1-year after the previous treatment (Tables 8 and 10). For plots that were hand cut, there were relatively constant, high $B_{0}{ }^{*} s$ across site conditions and forest regions in 1991 compared to 1975 . In contrast with the general hand cut group comparison, $B_{0}{ }^{*}$ values for 1975 and 1991 on xeric plots and for the Lake plain region may be interpreted as not being different between periods, in contrast with the general hand cut comparison; but, since the P-values are near the critical level $(\alpha=0.10)$ and sample size is relatively small, these site condition or regional differences are not clearly interpretable.

Species Composition

Acer, Betula, Fraxinus, Populus, Prunus, and Quercus were the most important genera during both 1975 and 1991 across herbicide and hand cut treated plots (Table 12). Acer rubrum, F americana, and P tremuloides were the most important species on ROWs in New York for both periods (Table 7).

Similarity coefficients averaged 0.65 and 0.58 for herbicide and hand cut treated plots, respectively (Table 8). Mean coefficients were greater than 0.5 for all treatment, site condition, and forest region plot groups, indicating similar species composition between 1975 and 1991.

Table 11. Correlation coefficients between right-of-way age, years since the previous selective tree removal treatment, right-of-way width, and 1975 whole plot tree density ($\mathrm{B}_{\mathrm{O}}{ }^{*}$) with 1991 regression equation coefficients.

Correlate	Sample size	1991 regression equation coefficients		
		$\mathrm{B}_{0}{ }^{*}$	$\mathrm{B}_{1}{ }^{\text {* }}$	$\mathrm{B}_{2}{ }^{\text {* }}$
Right-of-way age (1991)	58	$\begin{gathered} 0.25 \\ (0.06) \mathrm{a} \end{gathered}$	$\begin{gathered} -0.39 \\ (<0.01) \end{gathered}$	$\begin{gathered} 0.24 \\ (0.08) \end{gathered}$
Years since the previous selective tree removal treatment	$44^{\text {b }}$	$\begin{gathered} 0.33 \\ (0.03) \end{gathered}$	$\begin{gathered} 0.25 \\ (0.10) \end{gathered}$	$\begin{gathered} -0.06 \\ (0.69) \end{gathered}$
Right-of-way width	58	$\begin{aligned} & -0.35 \\ & (0.01) \end{aligned}$	$\begin{gathered} 0.07 \\ (0.60) \end{gathered}$	$\begin{gathered} 0.06 \\ (0.64) \end{gathered}$
1975 whole plot tree density	58	$\begin{gathered} 0.70 \\ (<0.01) \end{gathered}$	$\begin{gathered} 0.21 \\ (0.11) \end{gathered}$	$\begin{aligned} & -0.03 \\ & (0.84) \end{aligned}$

a p-values are in parentheses below each correlation.
b The samples size is lower than the total of 58 plots because management history information was not provided for sites 2, 3, 4 and 5 from 1975 to 1991.

Table 12. Retative density, relative frequency, importance values and ranking of trees, by genera, found on electric transmission line rights-of-way in 1975 and 1991 for both herbicide and hand cut treatment plots.

	Herbicide treated plots								Hand cut treated plots							
	Relative density		Relative frequency		$\begin{aligned} & \text { Importance } \\ & \text { value } \end{aligned}$		Jmportance value ranking		Relative density		Relative frequency		Importance value		Importance value ranking	
Genera	1975	1991	1975	1997	1975	1991	1975	1991	1975	1991	1975	1991	1975	1991	1975	1991
Abies	0.00	0.30	0.00	0.61	0.00	0.91	19	17	0.00	0.11	0.00	1.09	0.00	1.19	19	15
Acer	24.68	24.72	16.87	17.68	41.55	42.40	1	1	9.83	23.97	10.26	16.30	20.08	40.27	5	2
Ailanthus	0.25	1.59	0.60	1.83	0.86	3.42	16	10	0.00	0.00	0.00	0.00	0.00	0.00	18	20
Betula	8.29	14.85	10.84	11.59	19.14	26.43	5	3	6.09	14.36	7.69	7.61	13.78	21.97	8	4
Carya	0.50	0.80	3.01	3.66	3.51	4.45	10	8	2.49	0.41	5.13	5.43	7.62	5.85	10	8
Fagus	0.24	0.82	1.81	3.05	2.05	3.87	13	9	0.00	0.07	0.00	2.17	0.00	2.25	20	13
Fraxinus	16.57	13.77	12.65	13.41	29.22	27.19	3	2	19.35	30.31	11.54	15.22	30.88	45.52	1	1
Juglans	0.00	0.25	0.00	0.61	0.00	0.86	20	18	0.18	0.00	1.28	0.00	1.47	0.00	14	19
Juniperus	0.12	0.00	1.20	0.00	1.33	0.00	15	19	0.00	0.00	0.00	0.00	0.00	0.00	17	17
Liriodendron	0.44	0.73	1.81	1.83	2.25	2.56	12	12	0.00	0.00	0.00	0.00	0.00	0.00	16	21
Picea	0.24	0.15	1.20	1.22	1.45	1.37	14	16	0.00	0.11	0.00	1.09	0.00	1.19	21	16
Pinus	2.39	10.25	3.61	6.10	6.01	16.35	8	7	0.33	0.83	2.56	3.26	2.89	4.09	12	10
Populus	23.59	13.46	14.46	10.37	38.05	23.83	2	4	8.71	9.11	12.82	14.13	21.53	23.24	3	3
Prunus	8.07	9.78	9.64	7.93	17.71	17.70	6	6	8.03	11.36	10.26	9.78	18.29	21.15	6	5
Quercus	8.29	6.16	13.25	14.02	21.54	20.18	4	5	9.64	2.83	16.67	10.87	26.30	13.70	2	6
Robinie	4.39	0.67	1.81	1.22	6.19	1.89	7	14	10.82	2.24	2.56	1.09	13.38	3.33	9	11
Sassafras	0.71	1.22	1.81	1.83	2.52	3.05	11	11	14.64	2.54	6.41	3.26	21.05	5.80	4	9
Ihuto	0.00	0.00	0.00	0.00	0.00	0.00	21	21	1.86	0.22	2.56	2.17	4.42	2.39	11	12
Tilia	0.06	0.00	0.60	0.00	0.66	0.00	17	20	0.38	0.39	1.28	1.09	1.66	1.48	13	14
Isuga	0.00	0.15	0.00	1.22	0.00	1.37	18	15	0.00	0.00	0.00	0.00	0.00	0.00	15	18
Ulmus	1.16	0.32	4.82	1.83	5.98	2.15	9	13	7.66	1.15	8.97	5.43	16.64	6.58	7	7

[^1]
DISCUSSION

Periodic selective removal of trees using herbicides created relatively constant, compositionally similar, low density tree populations on New York ROWs between 1975 and 1991. A decrease in tree density along centerline and increase along the ROW edges are consistent with HYP 2 (Figure 4). The spatial redistribution of trees from 1975 to 1991 is related to vegetation management activities. Trees under centerline, and other woody vegetation that may impede access to and visibility of transmission towers and wires, are commonly, completely removed, and taller vegetation, generally short trees and shrubs, is allowed to grow along the Row edges during vegetation management (Niering and Goodwin, 1974; Bramble et al., 1985). While tall trees are not purposefully allowed to grow along ROW edges, their increased presence along the edges is a consequence of allowing other vegetation to grow taller. Taller vegetation shields the tall trees from view, and subsequently, from control by vegetation managers.

Creation of low density tree populations with herbicides is directly a result of complete tree removal. Both above- and belowground portions of trees are usually killed using herbicides. Maintenance of low density tree populations can be considered an indirect result of tree removal through the promotion of low-stature, residual, ROW plant communities. Interference effects of the
residual plant communities can reduce seed germination and seedling survival and growth (Niering and Goodwin, 1974; Niering et al., 1986). Herbivory may also be an important factor for controlling tree populations on some ROWs (Kays et al., 1987; Luken et al., 1992b).

Trees on the study areas were observed to be less than 16 years old. Age of trees on ROW plots was based on measurement of the two largest tree stems located just outside each plot and within the ROW areas. These stems were cut down at groundiine and aged by counting growth rings. Average age for all saplings was found to be 10 years (minimum of 4 years, maximum of 27 years). Only 8 of the 105 tree saplings measured were older than 16 years. Since species composition was generally constant between 1975 and 1991, especially on herbicide treated plots, ecesis from seed must have occurred during the study period in generally the same species proportions as existed in 1975. Buried viable seed was likely not an important mechanism for species persistence on ROWs (Hutnik et al., 1987). Invasion occurred during the study period from large-seeded, wind dispersed species (Acer and Fraxinus), light-seeded, wind dispersed species (Betula and Populus), and large-seeded, animal dispersed species (Prunus and Quercus). All plots were observed to have trees of seed producing size on both sides of all study plots.

Periodic, selective removal of trees by hand cutting, whereby only the aboveground portions of trees
are removed, produced tree stem densities 10 times higher in 1991 than on plots where trees were selectively removed with herbicides. This increase is likely due to sprouting and suckering. Failure to kill stumps and root systems of hardwood species can result in a proliferation of new trees stems on ROWs (Brown, 1989; Luken et al., 1991, 1992a; Nowak et al., 1992). Most species on the studied ROWs can sprout when aboveground stems are cut at or near groundline (Johnston, 1975; Mroz et al., 1985; Brown, 1989); some species also produce root suckers after cutting (e.g., Populus, Robinia, and Sassafras). This increase in tree density can eventually lead to uniform, dominant coverage of trees across Rows. Distribution of tree stems on hand cut plots did not follow the U-shaped pattern as observed on herbicide treated plots, but was linearly distributed across ROWs. Results of analyses of hand cut data are notably tenuous. Potential confounding effects and a relatively small sample size limit interpretation of results. Hand cut plots were generally older (51 versus 34 years), had more years since the previous treatment from 1991 (7 versus 4 years), had lower ROW width (27.1 versus 48.8 m), and higher 1975 stem density (1270 versus 520 stems $h a^{-1}$) compared to herbicide plots (Table 10). Correlation analysis of 1991 regression coefficients with these factors for all plots indicated significant associations, especially for $B_{0}{ }^{*}$ (Table 11). Right-of-
way age, years since the last treatment, and 1975 tree density were positively correlated, and Row width negatively correlated, with 1991 Bo* (Table 11). Observed increases in tree densities on hand cut plots between 1975 and 1991 may be, in part, due to these peripheral effects.

Sample size also limits interpretation of hand cut treatment effects. Four sites had trees selectively removed by hand cutting between 1975 and 1991 , but two of these sites had only one plot each (Table 4).

Results of the operational use of herbicides or hand cutting in selectively removing trees was consistent with experimental evidence. Bramble and Byrnes (1983) compared tree densities between ROW plots that were hand cut or basally treated with herbicides to selectively remove trees over a 14-year period in central Pennsylvania. Density of trees $\geq 1 \mathrm{~m}$ height was 2.5 times higher on hand cut plots as compared with selective herbicide treated plots. Similar results were found by ESEERCO (1985) in New York State for stems $\geq 1 \mathrm{~m}$. Two years after selective tree removal, hand cutting caused an 18\% increase in tree density compared to pretreatment densities. In contrast, selective removal of trees using herbicides resulted in a 59 to 78% decrease in tree density compared with pretreatment densities. Results of the current study extend these experimental results to a broader, more practical level. Operational, selective, complete removal of trees using herbicides can lead to
relatively stable, low density tree populations on electric transmission line ROWs.

ETUDIES 3, 4 AND 5: COST EFFECTIVENESS OF VEGETATION MANAGEMENT METHODS ON A RECENTLY CLEARED ELECTRIC TRANSMIBSION LINE RIGHT-OF-WAY

PREFACE

In fall, 1988, the Niagara Mohawk Power Corporation (NMPC) requested technical assistance with their ongoing electric transmission line ROW vegetation management research project -- The Volney-Marcy Vegetation Management study. In response to this request, a proposal entitled "Principles and practices of vegetation management on electric power transmission line rights-ofway" was written.

Our requested role in the Volney-Marcy study was to provide analytical and interpretation skills so as to generate objective results and interpretations regarding the cost effectiveness of several herbicide and nonherbicide treatment schemes for managing powerline corridor vegetation, using the Volney-Marcy study data. Prior to our involvement, there had been no rigorous analysis of the data, only a reporting of treatment means (Foreback and Stevens, 1985; Anonymous, 1987).

Initiation and design of the Volney-Marcy study was done by Curtis G. Foreback, Senior Environmental Analyst, Environmental Affairs Department, NMPC. Field work, including treatment plot layout and mapping, data collection, application of treatments, and permanent marking of plots in the field with 1 cm rebar, was performed by Tree Preservation Company, Incorporated

Abstract

(Briarcliff Manor, NY), as directed by Craig H. Stevens, Enviromental Manager. Data from Tree Preservation Company was received in Lotus $123^{\text {Th }}$ (Lotus Development Corporation, Cambridge, MA) spreadsheet format. Data cross-checking and other quality control activities were performed with these spreadsheets. In general, though, the data was analyzed as received but in reorganized form (see Appendix Tables 7 to 12 for summary of original data used for Studies 3, 4 and 5).

INTRODUCTION

Several herbicides, by themselves or in mixtures, have been used successfully in management schemes to remove trees and promote desirable plant communities on ROWs (Studies 1 and 2). These herbicides include 2,4-D, picloram and triclopyr. They are commonly used on ROWs in New York State (Table 3; Nowak et al., 1993). In the current study, these herbicides were used in different application schemes and compared for vegetation control and costs during initial clearing and the first and second treatment cycles of the conversion phase on one 765 kV ROW in Upstate New York. The objective was to determine which herbicide application mode (selective or nonselective) and method (basal versus cut stump versus no herbicide for the initial clearing study, and basal versus stem-foliar for the first and second conversion cycle studies) was most cost effective in accomplishing

Abstract

vegetation management objectives during these early ROW management phases. Additionally, cost effectiveness of grubbing or brush hogging was compared with basal and stem-foliar herbicide schemes during the second conversion cycle. The use of non-herbicide schemes is apparently increasing in New York State (Nowak et al., 1993). Cost effectiveness information for these techniques is timely and important as there is relatively little quantitative information on cost effectiveness of non-herbicide treatment schemes relative to herbicide schemes (Abrahamson et al., 1992).

BACKGROUND

Defining cost Effectiveness

Cost for ROW vegetation management can be viewed as including direct and indirect costs (Abrahamson et al., 1992). Direct costs pertain to the outlay of money made to treat ROW vegetation. Labor, equipment and materials costs are commonly reported as direct costs (ESEERCO, 1984; Abrahamson et al., 1991a,b; Nowak et al., 1992). Indirect costs are the loss or nonproduction of values than can result from treatment. Wildlife and aesthetics are examples of values from Rows that can be considered indirect costs if they are not effectively produced on ROWs with management (Abrahamson et al., 1992). These values are included as part of the regulatory objective for vegetation management on
powerline corridors in New York (de Waal Malefyt, 1984). Realistic dollar amounts are difficult, if not impossible, to ascribe to indirect costs.

Effectiveness is a relative measure of the success of a treatment in producing a desired effect. The desired effect for ROWs is the production of safety, reliability, wildife and aesthetic values. Initial reduction and subsequent maintenance of tree stem density at relatively low levels and promotion of woody desirables has been viewed as a means of achieving reliable transmission of electricity in a cost effective manner, and at the same time achieving corollary sets of values from ROWs (Study 2).

Cost effectiveness has commonly been examined by dividing it into these two component parts, cost and effectiveness. Some studies have only one of these components (e.g., effectiveness in Bramble and Byrnes, 1983). Other studies have had both components, but have not examined them as a collective measure (e.g., ESEERCO, 1984, 1985). A few studies have considered the terms as one measurement (e.g., Bramble et al., 1985; Nowak et al., 1992). Bramble et al.(1985) defined a CostEffectiveness Quotient (CEQ):

$$
\mathrm{CEQ}=\frac{\text { Cost per } 1000 \text { stems (\$) }}{\text { Tree stem reduction (\%) }} \times 100
$$

While this CEQ value effectively combines cost and effectiveness into one measurement, there is no objective
reason why it should accurately reflect cost effectiveness. Because $C E Q$ is calculated using percentages, it is highly sensitive to pretreatment tree density values. It is necessary to account for pretreatment density effects in comparing cost effectiveness of management methods (ESEERCO, 1984).

Cost effectiveness of vegetation management schemes in the current study was viewed as a function of vegetation changes (effectiveness) caused by a treatment and the direct costs of equipment, labor and materials. A treatment that would:

1) increase/maintain desirables,
2) decrease tree density, and
3) have relatively low costs
was determined as most cost effective.

Electric Transmission Line Right-of-way Vegetation Management Phases

Right-of-way vegetation management can be divided into a series of phases. In the past, two phases or stages have been considered: initial clearing and maintenance phases (Galvin et al., 1979), conversion and maintenance stages (Egler and Foote, 1975), and initial clearing and post clearing (Study 1). For the current study, these two division approaches were were hybridized into a three phase approach to viewing ROW vegetation management: initial clearing, conversion, and
maintenance. The distinction among these phases is the relative importance of tree stems on ROWs; there is a higher proportion of tree stems the closer vegetation management is to the initial clearing phase. Initial clearing is performed prior to and during electric transmission facilities installation. It entails removing most trees and other tall growing vegetation (e.g., vines). While this phase is referred to as the initial clearing phase, it is not a clearing in an absolute sense as many of the desirable components of the ROW plant communities are left intact. The initial removal of trees from a ROW results in reestablishment of trees from seed, seedlings, stump sprouts, and root sprouts. High numbers of trees and low numbers of desirables are expected during the initial clearing phase.

The conversion phase entails removal of trees, generally using herbicides. During the conversion phase there is a shift in plant community composition from communities with trees as the dominants to communities with desirables as the dominants. Treatment cycle lengths within the conversion phase are a relatively short 3-5 years.

Relatively stable low growing desirable plant communities are furthered and cyclically maintained in the maintenance phase. Treatment cycles are a relatively long 5-10 years.

Tree stems are not completely eradicated from a site
during any phase, but can only be contained on ROWs. Containment entails cyclically killing the more readily visible trees. Many trees are not removed during any one treatment cycle, and new invasions of tree stems can occur. Wide seed dispersal and persistence of buried seed leads to a relatively constant tree component on every ROW site. Most of the residual and newly established tree stems will die over the course of the treatment cycle, but some will grow above the desirable plant community canopy and be treated at the end of the following cycle.

Deferred management and unsuccessful treatment schemes can lead to unsuccessful containment of tree stems and reversion of the plant communities to previous phases.

Cost effectiveness varies as a function of tree density, size, and species (ESEERCO, 1984, 1985); therefore, differences are expected in the cost effectiveness of a treatment from one phase to another.

MATERIALS AND METHODS

Study Area Description

Studies took place on the Niagara Mohawk Power Corporation's Volney-Marcy 765 kV electric transmission line ROW in the Towns of Lee, Western and Floyd in Oneida County, New York (43021'N, 75032'W to $43^{\circ} 1^{\prime}{ }^{\prime} N, ~ 75^{\circ} 17^{\prime} \mathrm{W}$). The ROW passes through the Interlobal Highland Region,
between the Tug Hill Plateau and the Mohawk Valley; it is covered by Northern Hardwood forest with a predominance of red maple (Acer rubrum L.) and Eastern hemlock (Tsuga canadensis [L.] Carr.), although there was a mixture of both abandoned and active agricultural and forest land on and surrounding the study area.

The Volney-Marcy ROW is 68.6 m wide. The study area is approximately 24 km in length, generally east-west in direction. On the south side of the Volney-Marcy ROW is the 21-yr-old (1992 age) New York Power Authority Fitzpatrick to Edic 345 kV transmission line. Its ROW width is 45.7 m .

Soils of the study area are silt and sandy loams, including a variety of Fragiaquepts, Eutrochrepts and Haplaquepts of varied drainage. The dominant soil series encountered were Camroden, Pickney, Pyrities, Katurah and Malone (J. Kraft, Soil Conservation Service, 1989, personal communication). In general, mesic conditions are dominant throughout the study area.

Experimental Design Selection

Upon initial examination of the Volney-Marcy study and consultations with study personnel in 1989 (C.G. Foreback and S.B. Shaheen, Niagara Mohawk Power Corporation, and C.H. Stevens, Tree Preservation Co., Inc.), it was apparent that a rigorous experimental approach was not used to analyze the study prior to 1989. However, treatments were replicated and an attempt was
made to account for preclearing land use effects through some blocking between woodland and abandoned agricultural land; hence, there was a basis for a posteriori derivation of an analysis technique that would allow objective testing of treatment effects.

The analysis approach for each study was selected for simplicity and to represent the intent and field plot layout, and to provide for relatively high statistical power.

Division of Treatment plots into Three Studies

Treatment plots were divided into three studies: 1) initial clearing herbicide study (Study 3), 2) first and second conversion cycle herbicide studies (Study 4), and 3) second conversion cycle non-herbicide study (Study 5).

Experimental Design and Treatments for the Initial Clearing Study -- Study 3

A completely randomized factorial design four replications) was used to test initial clearing herbicide treatment mode (clearcut [nonselective] and selective cut [selective]) and method (basal, cut stump or no herbicide treatment) effects on desirable woody stem density, tree stem density, tree sprouting, and treatment costs.

Treatment plots ranged in size from 0.25 to 0.85 ha , extending from edge to edge of the ROW. Treatment plots were systematically assigned within randomly chosen ROW areas (Figure 5).

Figure 5. Study plot layout for the initial clearing study (Study 3). The line with triangles represents the Volney-Marcy 765 kV transmission line. Numbers (e.g., 126-1B) along the line are plot designations.

The treatments included stem cutting with basal and cut stump herbicide, and no herbicide, applied selectively and nonselectively at the time of clearing (1983) (Table 13). The six treatments were (mode/method): Selective/basal -- basal treatment of tree vegetation during late April-early May, 1983, with a herbicide formulation consisting of 7.6 L of triclopyr ${ }^{4}$ at 0.480 kg active ingredient (ai) L^{-1} ([(3,5,6-trichloro-2pyridinyl) oxy]acetic acid) mixed with 371 L of No. 2 fuel oil; it was targeted at the lower 0.3 to 0.6 m of individual stems, saturating the base of the stem and all exposed roots to the point of rundown and puddling around the root collar zone. Treated stems were cut with chainsaws at groundline two to three weeks after herbicide treatment.

Nonselective/basal -- basal treatment of all woody vegetation with a herbicide formulation, application method and stem cutting the same as that for the selective/basal treatment.

Selective/cut stump -- cut stump treatment of tree vegetation during late May-mid July, 1983, with a "ready to use" herbicide formulation of picloram ${ }^{5}$
(4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid) at
0.024 kg ai L^{-1} and $2,4-\mathrm{D}$ [(2,4-dichlorophenoxy)acetic

[^2]Table 13. Total active ingredient of herbiciden applied during initial clearing and first and second conversion cycle studies.

	Total herbicide mpplied		
Herbicide application scheme	Initial clearing (1983)	```Firet conversion cycle (1984)```	Second conversion cycle (1988)

\qquad

Initial clearing study treatmenta:

Clearcut/bagal: ${ }^{\text {a }}$	triclopyr	9.7	-	-
Clearcut/cut stump: ${ }^{\text {b }}$	picloram	1.1	-	
	2,4-D	4.6	-	-
Selective cut/babal: ${ }^{\text {a }}$	triclopyr	9.6	-	-
Selective cut/cut atump: ${ }^{\text {b }}$	picloram	0.8	-	
	2,4-D	2.9	-	

Conversion cycle study treatmenta:

Selective/basal:a	triclopyr	-	7.6	2.1
Selective/stem-foliar: ${ }^{\text {c }}$	triclopyr	-	2.1	1.2
	picloram	-	0.3	0.2
	2,4-D	-	1.3	0.9
Nonselective/basal: ${ }^{\text {a }}$	triclopyr	-	5.7	2.2
Nonaelective/stem-foliar: ${ }^{\text {c }}$	triclopyr	-	5.7	1.6
	picloram	-	1.0	0.2
	2,4-D	-	3.8	1.0

a Baeal herbicide formulation consisted of 7.6 I of Garlon 4 and 371 L of No. 2 fuel oil.
b Cut etump formulation was Tordon RTU, a "ready to uee" formulation.
e Stem-follar herbicide formulation consisted of 1.5 L of Garlon 4, 1.9 L of Amdon 101 (first conversion cycle) or Tordon 101 (second conversion cycle), 1 L of surfactant (Surfel), and 375 L of water.
acid] applied to the freshly cut cambial area of the stump using a hand held squirt bottle. Stems were cut with chainsaws at groundline.

Nonselective/cut stump -- cut stump treatment of all woody vegetation with a herbicide formulation and application method the same as that for the selective/cut stump treatment.

Selective cut/no herbicide treatment -- cutting with chain saws of all tree stems at groundine during early June-early July, 1983. No herbicide treatment was used. Nonselective cut/no herbicide treatment -- cutting with chain saws of all woody stems during early June-early July, 1983. No herbicide treatment was used.

Experimental Design and Treatments for the First and Second Conversion Cycle Herbicide Studies -- Study 4

A randomized complete block factorial design (six replications) was chosen to test first and second conversion cycle study herbicide mode (nonselective and selective) and method (basal and stem-foliar) effects on desirable woody stem density, tree stem density, number of stems greater than 1.8 m , number of stems greater than 3.7 m , mean height, herbaceous cover, and treatment costs.

Experimental units from all treatments were blocked across preclearing and surrounding land use areas.

Treatment plots ranged in size from 0.16 to 0.85 ha , extending from edge to edge of the ROW.
Treatment plots were systematically assigned to previously used plots from the initial clearing study (Figures 5 and 6).
The four treatments included basal stem-foliar herbicide treatments applied selectively and nonselectively at the beginning of the first conversion cycle study (1984) and repeated at the beginning of the second conversion cycle study (1988) (Table 13). Stem cutting was not included in the first and second conversion cycle studies. The four treatments were (mode/method) :
Selective/basal -- basal treatment of tree vegetation during late July-August 1984 and 1988 with a herbicide formulation consisting of 7.6 L of triclopyr ${ }^{4}$ at 0.480 kg ai L^{-1} and 371 L of No. 2 fuel oil; it was targeted at the lower 0.3 to 0.6 m of individual stems, saturating the base of the stem and all exposed roots to the point of rundown and puddling around the root collar zone. Nonselective/basal -- basal treatment of all woody vegetation with a herbicide formulation and application method the same as that for the selective/basal treatment.
Selective/stem-foliar -- stem-foliar treatment of tree vegetation with a herbicide formulation consisting of a mixture of 1.4 L of triclopyr ${ }^{4}$ at 0.480 kg ai $\mathrm{L}^{-1}, 1.9 \mathrm{~L}$

Figure 6. Study plot layout for the first and second conversion cycle herbicide studies (Study 4). The line with triangles represents the Volney-Marcy 765 kV transmission line. Numbers (e.g., 126-1B) along the line are plot designations.
of a formulation of picloram ${ }^{6}$ at 0.060 kg ai L^{-1} plus $2,4-\mathrm{D}$ at 0.240 kg ai $\mathrm{L}^{-1}, 0.95 \mathrm{~L}$ of surfactant ${ }^{7}$ (crop oil concentrate) and 375 L water, applied to leaves, branches and stems to a point of wetness.

Nonselective/stem-foliar -- stem-foliar treatment of all woody vegetation with a herbicide formulation and application method the same as that for the selective/stem-foliar treatment.

Five of the second conversion cycle study basal treatment plots -- plots 136-2, 150-2, 150-4, 150-6, and 150-8 -- were not treated in 1988; the plots were located within designated wetland areas and could not receive herbicide treatment.

Experimental Design and Treatments for the Second Conversion Cycle Herbicide versus Non-herbicide Treatment Scheme Study -- Study 5

A completely randomized design (7 to 12
replications) was chosen to examine second conversion cycle study herbicide (basal and stem-foliar) and nonherbicide (brush hogging or grubbing) treatment scheme effects on desirable and tree woody stem density, number of stems greater than 1.8 m , number of stems greater than 3.7 m , mean height, relative herbaceous cover, and

6 In 1984, Amdon 101, Union Carbide Agricultural Products Company, Inc., P.O. Box 12014, 2 T.W. Alexander Drive, Research Triangle Park, North Carolina, 27709; in 1988, Tordon 101, DowElanco, Indianapolis, Indiana 462681189.

7 Surfel, Union Carbide Agricultural Products Company, Inc., P.O. Box 12014, 2 T.W. Alexander Drive, Research Triangle Park, North Carolina, 27709.
treatment costs. The basal and stem-foliar herbicide treatment scheme data is a combination of nonselective and selective treatment modes used in Study 4.

Treatment plots for brush hogging ranged in size from 0.2 to 0.8 ha; for grubbing, 0.4 to 1.6 ha. plots extended from edge to edge of the ROW. Treatment plots were randomly assigned to areas used in Studies 3 and 4 (Figure 7).

The two non-herbicide treatments were brush hogging and grubbing:

Brush hogging -- a Hydro-Ax ${ }^{T M}$ or similar machine was used to brush hog all vegetation.

Most treatment plots were brush hogged during September and October, 1988. Plots 8134-4 and 8154-4 were treated during June, 1988, Plot 8156-1 during June and October, 1988, Plots 8199-3 and 8205-1 during September 1988 and 1989, and Plot 8207-1 during May and October 1988, and September, 1989.

Variation associated with plot treatment times may affect treatment comparisons. However, this effect is likely to be an increase in the experimental error, which would make treatment comparisons more conservative. Grubbing -- a bulldozer with a root rake was used to "grub" all vegetation, including roots, from the site during August-October, 1988. All grubbed materials, including physical impediments such as boulders, were pushed to the edges of the plot. The plot was leveled in the process.

Figure 7. Study plot layout for the second conversion cycle non-herbicide study (Study 5). The line with triangles represents the Volney-Marcy 765 kV transmission line. Numbers (e.g., 126-4) along the line are plot designations.

All grubbed plots were subdivided into 2 to 12 subplots. Seeding (eight different seed mixes), fertilization, tracking, and/or mulching were done on a subplot basis (Appendix Table 12). There was little or no replication of these post-grubbing treatments.

Variation associated with subplot treatments could affect plot level treatment comparisons. However, the effects of post-grubbing treatments on desirable and tree vegetation was likely small due to the low coverage of seeded plants. Total coverage of seeded plants at the end of the treatment cycle (1990) averaged only 18\% (Appendix Table 12). Therefore, the subplot effect is likely unimportant.

Data Collection

Treatment costs for all studies were based on current year (1983, 1984 and 1988) contractor billing rates for labor, equipment and materials (Table 14). Labor and equipment use was measured by timing all activities associated with treating a plot. Treatment costs reflect on plot productive time only; it does not include mobilization, demobilization or equipment maintenance costs. Amount of herbicide formulation used to treat each plot was measured using an in-line flow meter. Grubbing treatment cost did not include the cost of seeding, fertilizing, tracking, or mulching. Brush hogging costs were calculated as a per plot average when there was more than one treatment on a plot. Actual

Table 14. Sumary of costs associated with the initial clearing and firgt and second conversion cycle studies.

Category	Initial clearing otudy (1983)	First conversion cycle study (1984)	```second conversion cycle studya (1988)```
		dollars h^{-1}	
Itabor			
Foreman	27.00	27.00	27.00
Laborers	26.25	26.25	26.25
Equipment			
4×4 epray rig	8.60	8.60	8.60
Tank truck	6.75	6.75	6.80
Brush hog (Hydro-Ax ${ }^{\text {TM }}$)	not used	not used	45.00
JD 540 A Skidder	18.80	not used	not used
JD 450 C Dozer with rake	18.50	not used	not used
D-6 bulldozer	not used	not used	46.00
Chainsaw	2.00	not used	2.00
4×4 pickup	6.25	not used	not used
	-	ollare L^{-1}	
Materials -- herbicide formulation:			
Basal ${ }^{\text {a }}$	0.70	0.70	0.76
Cut stump ${ }^{\text {b }}$	4.87	not used	not used
Stem-foliar ${ }^{\text {c }}$	not used	0.12	0.14

[^3]costs for all treatments may be higher or lower than if done on an operational scale, but the cost ratios among treatment would likely not change. Therefore, the cost comparisons presented here should represent results obtained at an operational level.

Vegetation was measured using 4.3 m wide strip transects. These transects extended generally along the plot center, located under the center conductor, and extending along a parallel line located 15.2 m to the north of centerline, nearly under the north conductor. Transects were begun and ended at 6.1 m from the plot edge. Transect lengths were ascribed to cover 7\% of the treatment plot.

Shrub and tree stem density (number of stems ha-1 as shoot sprouts, root sprouts and seedlings) were measured by species in 1982-83 (initial clearing study), 1985-87 (first conversion cycle study), and 19891990 (second conversion cycle study). Plants were categorized as tree or desirable based on Niagara Mohawk Power Corporation's "List of trees to be trimmed, removed or sprayed" (NMPC, 1989; Table 15). In general, desirable stems are defined as those plants that attain maximum heights of less than 6.1 m , tree stems as those that can attain minimum mature height growth greater than 6.1 m (ESEERCO, 1984).

Percent herbaceous cover during the first conversion cycle was tallied separately in 1986 using quadrat samples

Table 15. List of tree (undesirable) and desirable woody plant species present on the Volney-Marcy atudy area.a

```
Undegirable gpecieg:
striped maple (Acer pensylvanicum L.)
red maple (Acer rubrum L.)
sugar maple (Acer saccharum Margh.)
serviceberry (Amelanchier spp.)
yellow birch (Betula alleghaniensis Britt. [Betula lutea Michx. f.])
paper birch (Betula papyrifera Marsh.)
gray birch (Betula populifolia Marsh.)
American hornbeam (Carpinus caroliniana Walt.)
hickory (Carya spp.)
American beech (Fagus grandifolia Ehrh.)
white ash (Fraxinus americana L.)
walnut (Juglans spp.)
eastern hophornbeam (Ostrya virginiana [Mill.] K. Koch)
spruce (Picea spp.)
red pine (Pinus resinosa Ait.)
eastern white pine (Pinus strobus L.)
Scotch pine (Pinus sylvestris L.)
poplar (Populus spp.)
trembling aepen (Populus tremuloides Michx.)
pin cherry (Prunus pensylvanica L. f.)
black cherry (Prunus serotina Ehrh.)
common chokecherry (Prunus virginiana L.)
oak (Quercus epp.)
gasmafras (Sassafras albidum [Nutt.] Nees)
American mountain-ash (Sorbus americana Marsh.)
American basswood (Tilia americana L.)
eastern hemlock (Tsuga canadensis [L.] Carr.)
elm (Ulmus spp.)
```


Desirable species:

```
mountain maple (Acer spicatum Lam.)
```

mountain maple (Acer spicatum Lam.)
alder (Alnus spp.)
alder (Alnus spp.)
chokeberry (Aronia spp.)
chokeberry (Aronia spp.)
dogwood (Cornus spp.)
dogwood (Cornus spp.)
alternate-leaved dogwood (Cornus alternifolia L. f.)
alternate-leaved dogwood (Cornus alternifolia L. f.)
hazel (CoryIus spp.)
hazel (CoryIus spp.)
hawthorn (Crataegus spp.)
hawthorn (Crataegus spp.)
witch-hazel (Hamamelis virginiana L.)
witch-hazel (Hamamelis virginiana L.)
holly (Ilex gpp.)
holly (Ilex gpp.)
juniper (Juniperus spp.)
juniper (Juniperus spp.)
gpicebush (Lindera benzoin [L.] Blume)
gpicebush (Lindera benzoin [L.] Blume)
honeysuckle (Lonicera spp.)
honeysuckle (Lonicera spp.)
apple (MaIus spp.)
apple (MaIus spp.)
mountain holly (Nemopanthus mucronata [L.] Loesener ex Koehne)
mountain holly (Nemopanthus mucronata [L.] Loesener ex Koehne)
buckthorn (Rhamnus epp.)
buckthorn (Rhamnus epp.)
sumac (Rhus spp.)
sumac (Rhus spp.)
American black currant (Ribes americanum Mill.)
American black currant (Ribes americanum Mill.)
rose (Rosa epp.)
rose (Rosa epp.)
willow (Salix epp.)
willow (Salix epp.)
elderberry (Sambucus spp.)
elderberry (Sambucus spp.)
gpiraea (Spira0a spp.)
gpiraea (Spira0a spp.)
yew (Taxus spp.)
yew (Taxus spp.)
low sweet blueberry (Vaccinium angustifolium Ait.)
low sweet blueberry (Vaccinium angustifolium Ait.)
highbuah blueberry (Vaccinium corymbosum L.)

```
highbuah blueberry (Vaccinium corymbosum L.)
```

Table 15 continued.

```
Degirable gpeciege:
maple leaved viburnum (Viburnum acerifolium L.)
witch-hobble (Viburnum alnifolium Marsh.)
witherod (Viburnum cassinoides L.)
nannyberry (Viburnum lentago L.)
arrow-wood (Viburnum recognitum Fern.)
grape (Vitis spp.)
```

a Designation as undesirable and desirable specien was based on Niagara Mohawk Power Corporation's "List of trees to be trimmed, removed, or sprayed" (NMPC, 1989). Nomenclature follows Little (1979).
($0.37 \mathrm{~m}^{2}$ quadrats) located at 3 m intervals down the center of each strip transect. Relative herbaceous plant cover was measured in 1989 (second conversion cycle study) using $301 \mathrm{~m}^{2}$ quadrats randomly located within 1.8 m of the strip transects.

Hypothesis Testing and Planned Comparisons

The hypothesis for all studies was:

> If an existing land areas is treated during initial clearing or the conversion phase using certain vegetation management schemes, then tree density will be reduced and suitable low growing, desirable plant communities will be promoted that are compatible with cost effective transmission of electricity.

The accompanying statistical hypothesis is that treatments methods are equal in cost effectiveness.

Measurements made the year before a treatment and at the end of the associated treatment cycle were used in the statistical analyses.

Analysis of variance and analysis of covariance were used to test herbicide treatment mode and method effects on tree and desirable woody stem density, total number of stump sprouts (only 1983), and percent of tree stumps that sprouted (only 1983), number of stems greater than 1.8 m (only 1987 and 1990), number of stems greater than 3.7 m (only 1987 and 1990), and mean stem height (1987 and 1990 only), at the end of each treatment cycle -1983 for the initial clearing study, 1987 for first conversion cycle study, and 1990 for second conversion
cycle study. Mode and method effects on herbaceous cover were tested for 1986 (first conversion cycle) and on herbaceous density in 1989 (second conversion cycle). Treatment effects on costs were tested for each treatment year -- 1983 for initial clearing study, 1984 for the first conversion cycle study, and 1988 for the second conversion cycle study. An significance level of alpha=0.20 was chosen as the critical value for significance testing. Analysis of covariance was used to adjust for non-homogeneous pretreatment stem densities or percent cover, only if the correlation between the concomitant and dependent variable was greater than r=0.30 (Cochran, 1957). Planned contrasts were performed for the initial clearing study (Study 3) and for the second conversion cycle non-herbicide study (Study 5). An unbalanced design approach to analysis was taken to examine second conversion cycle mode and method effects on vegetation because all treatments were not represented in all blocks due to five basal plots that did not receive herbicide treatment and unequal replication of the brush hog treatment relative to the herbicide or grub treatments ($n=8$ instead of 12). In both cases, Type III sums of squares were used to test hypotheses (Milliken and Johnson, 1984). Cost comparisons for the second conversion cycle herbicide study (Study 4) were performed using a balanced design analysis. The five plots that did not receive basal
treatment were sprayed with water; costs were calculated as if herbicides had been used.

All statistical analyses were done using the SAS computer software package (SAS Institute, Inc., 1985).

RESULTS AND DISCUSSION

Study 3 -- Initial Clearing Herbicide and Non-herbicide Treatment Methods

Herbicide use reduced desirables as compared to no herbicide treatment, 3990 versus 10570 stems ha-1 (Tables 16 and 17). This reduction may be attributed to the killing of desirables in the nonselective mode, and perhaps due to some off-target activity of the herbicides in the selection mode. Trees were in close proximity with desirables, hence, some reduction in desirable stems with herbicides could be expected with selective treatment using basal and cut stump herbicides. Cut stump had less trees than basal schemes, 20670 versus 56290 stems ha-1 (Tables 16 and 17). Herbicide treatments reduced the sprouting of trees compared with no herbicide treatment, percentage of stumps that sprouted averaged 22 versus 71 (Tables 16 and 17). Basal treatment plots had a lower sprouting percentage than cut stump in the nonselective mode, but sprouting percentage was not different among methods in the selective mode (Tables 16 and 17). The total number of stump sprouts was also reduced with herbicide use compared to no herbicide treatment, 4100 versus 11860 stems ha-1; however, there

Table 16. P-valueg from testing initial clearing treatment ffacts on desirable and undesirable vegetation and coste.

Source of variation	Degrees of freedom	1983 dens ity		1983 Total tret stup eprouts	1983 Percent of tree stump thet sprouted	4983 Cost			
		Desirable	Tree			tebor	Equipment	Materiel	Total
Covariate ${ }^{\text {a }}$	1	<0.01	.b	<0.01	-	0.56	-	*	-
Mode (Mo)	1	0.38	0.97	0.20	0.86	0.61	0.33	0.71	0.23
Method (Me)	2	0.01	0.25	<0.01	40.01	0.18	0.73	40.01	0.09
Mo X Me	2	0.73	0.73	0.27	0.10	0.79	0.44	0.94	0.55
Contrasts: ${ }^{\text {c }}$									
Herb. vs NT	1	60.01	0.99	<0.01	<0.01	0.10	0.66	<0.01	0.06
B V8 CS	1	0.66	0.10	0.80	0.53	0.41	0.52	<0.01	0.25
1NT: Herb. vs NT	T 1	0.85	0.44	0.20	0.70	0.98	0.77	0.79	0.91
IWT: B vs CS	1	0.45	0.92	0.38	0.04	0.50	0.22	0.81	0.29
Herb. vs MT w/WS	S 1	-	*	0.01	.	.	*	-	-
Herb. vs MT w/S	1	-	-	<0.01	\bullet	-	-	-	-
$8 \mathrm{vs} \mathrm{CS} \mathrm{W/NS}$	1	-	-	-	0.04	*	*	-	-
B ve CS \mathbf{H} / \mathbf{S}	1	-	-	*	0.30	-	-	-	-

[^4]Table 17. Mean desirable and tree atem density, tree aprout density, and percent of tree stumps that sprouted for initial clearing treatments at the end of the initial clearing cycle.

Treatment ${ }^{\text {a }}$		Sample size (n)	$\begin{gathered} 1983 \\ \text { Stem density } \end{gathered}$		1983 tree gtump eprout density	1983Percent oftreeetumpathatsprouted
Mode	Method		Desirable	Tree		
			\ldots	stems ha-1		
Unadjuated ${ }^{\text {b }}$						
NS	B	4	$\begin{aligned} & 6130 \\ & (3270) \end{aligned}$	$\begin{gathered} 60260 \\ (31560) \end{gathered}$	$\begin{aligned} & 1130 \\ & (500) \end{aligned}$	$\begin{aligned} & 12 \\ & (4) \end{aligned}$
NS	cs	4	$\begin{gathered} 3340 \\ (1050) \end{gathered}$	$\begin{aligned} & 26740 \\ & (8020) \end{aligned}$	$\begin{gathered} 7500 \\ (4940) \end{gathered}$	$\begin{aligned} & 33 \\ & (9) \end{aligned}$
NS	NT	4	$\begin{gathered} 8480 \\ (3170) \end{gathered}$	$\begin{aligned} & 29230 \\ & (4030) \end{aligned}$	$\begin{aligned} & 13470 \\ & (2830) \end{aligned}$	$\begin{aligned} & 69 \\ & (5) \end{aligned}$
S	B	$4(3){ }^{\text {d }}$	$\begin{gathered} 6110 \\ (4420) \end{gathered}$	$\begin{gathered} 52320 \\ (28980) \end{gathered}$	$\begin{gathered} 5420 \\ (1570) \end{gathered}$	$\begin{aligned} & 28 \\ & (7) \end{aligned}$
s	cs	4(3)	$\begin{aligned} & 1650 \\ & (620) \end{aligned}$	$\begin{aligned} & 14620 \\ & (7930) \end{aligned}$	$\begin{aligned} & 1190 \\ & (430) \end{aligned}$	$\begin{aligned} & 16 \\ & (2) \end{aligned}$
5	NT	4	$\begin{aligned} & 11460 \\ & (2600) \end{aligned}$	$\begin{gathered} 47450 \\ (23190) \end{gathered}$	$\begin{aligned} & 11420 \\ & (3080) \end{aligned}$	$\begin{aligned} & 73 \\ & 19) \end{aligned}$
Adiusted (${ }^{\text {a }}$ (2600) (308)						
NS	B	4	$\begin{gathered} 2960 \\ (2350) \end{gathered}$	- ${ }^{\text {e }}$	$\begin{gathered} 3240 \\ (1650) \end{gathered}$	-
NS	cs	4	$\begin{gathered} 3630 \\ (2170) \end{gathered}$	-	$\begin{aligned} & 4350 \\ & (1700) \end{aligned}$	-
NS	NT	4	$\begin{gathered} 9530 \\ (2200) \end{gathered}$	-	$\begin{gathered} 9610 \\ (1730) \end{gathered}$	-
s	B	4	$\begin{gathered} 6050 \\ (2170) \end{gathered}$	-	$\begin{gathered} 5410 \\ (1610) \end{gathered}$	-
s	cs	4	$\begin{gathered} 3330 \\ (2220) \end{gathered}$	-	$\begin{gathered} 3430 \\ (1650) \end{gathered}$	-
s	$N T$	4	$\begin{aligned} & 11630 \\ & (2170) \end{aligned}$	-	$\begin{aligned} & 14100 \\ & (1680) \end{aligned}$	-

a Treatmente: NS -- nonselective, s-- aelective, B-- basal, $C S$-- cut stump, NT -- no herbicide treatment.
b Unadjusted means are calculated directly from the plot data, adjuFted meana are from the analysig of covariance.

C Numbers in parentheses below the means are standard errore.
d Sample sizes in parentheses are for percent tree stumps that aprouted; they are lower because one plot was not measured and one plot did not have stumpe.
e A hyphen for adjusted meand means that analysis of covariance was not used.
was still relatively high densities of trees from stump sprouts, root sprouts, and seedlings one-growing season after initial clearing, an average of nearly 40000 stems ha-1 on herbicide treated plots (Tables 16 and 17).

Total treatment cost was higher for herbicide treatments versus no herbicide treatment, $\$ 3290$ versus $\$ 2300 \mathrm{ha}-1$, due primarily to higher costs for labor and materials (Tables 16 and 18). There was no difference in total cost between basal and cut stump treatments, although basal herbicide materials were more expensive than for cut stump (Tables 16 and 18).

Given that the number of desirable stems was reduced with herbicide treatment, tree density was generally the same between herbicide treated and no herbicide treatment plots, and costs were higher for herbicide treatments as compared with no herbicide treatment, the most cost effective method for initial clearing was clear or selective cutting with no herbicide treatment.

Conventional practice for initial clearing of vegetation on powerline corridors in New York is to use a cut stump herbicide scheme (Study 1). Results from the current study show that this is not a cost effective approach. Even with herbicide treatment, there were very high tree stem densities after 1 -growing season. Herbicides were effective in reducing tree stump sprouting, but the reduction in stump sprout densities was relatively small compared to the total number of tree stems present on the site. Herbicide use during initial

Table 18. Mean costa for the initial clearing treatments.

Treatment ${ }^{\text {a }}$		$\begin{gathered} \text { Sample } \\ \text { size } \\ \text { (n) } \end{gathered}$	1983 Costs			
Mode	Method		Labor	Equipment	Materials	Total
				- doll	ha^{-1}	
Unadjusted ${ }^{\text {b }}$						
NS	B	4	$\begin{gathered} 1940 \\ (80)^{c} \end{gathered}$	$\begin{aligned} & 930 \\ & (80) \end{aligned}$	$\begin{gathered} 720 \\ (150) \end{gathered}$	$\begin{aligned} & 3590 \\ & (100) \end{aligned}$
NS	cs	4	$\begin{aligned} & 1950 \\ & (150) \end{aligned}$	$\begin{aligned} & 1420 \\ & (160) \end{aligned}$	$\begin{aligned} & 170 \\ & (20) \end{aligned}$	$\begin{aligned} & 3440 \\ & (250) \end{aligned}$
NS	NT	4	$\begin{aligned} & 1520 \\ & (330) \end{aligned}$	$\begin{aligned} & 1020 \\ & (240) \end{aligned}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{aligned} & 2540 \\ & (550) \end{aligned}$
s	B	4	$\begin{aligned} & 1900 \\ & (170) \end{aligned}$	$\begin{gathered} 1000 \\ (80) \end{gathered}$	$\begin{gathered} 700 \\ (150) \end{gathered}$	$\begin{aligned} & 3600 \\ & (390) \end{aligned}$
s	cs	4	$\begin{aligned} & 1390 \\ & (420) \end{aligned}$	$\begin{gathered} 850 \\ (340) \end{gathered}$	$\begin{aligned} & 110 \\ & (30) \end{aligned}$	$\begin{aligned} & 2350 \\ & (780) \end{aligned}$
s	NT	4	$\begin{aligned} & 1160 \\ & (410) \end{aligned}$	$\begin{gathered} 900 \\ (410) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{aligned} & 2060 \\ & (820) \end{aligned}$
Adfusted						
NS	B	4	$\begin{aligned} & 1900 \\ & (300) \end{aligned}$	_d	-	-
NS	cs	4	$\begin{aligned} & 1880 \\ & (320) \end{aligned}$	-	-	-
NS	NT	4	$\begin{aligned} & 1430 \\ & (350) \end{aligned}$	-	-	-
s	B	4	$\begin{aligned} & 1950 \\ & (300) \end{aligned}$	-	-	-
5	cs	4	$\begin{aligned} & 1480 \\ & (320) \end{aligned}$	-	-	-
5	NT	4	$\begin{aligned} & 1260 \\ & (350) \end{aligned}$	-	-	-

[^5]clearing of powerline corridors is not effective in situations where there is a high potential for invasion and establishment of trees.

Study 4 -- First Conversion cycle Herbicide Treatment Methods

There were no mode or method effects on desirable and tree stem densities or herbaceous cover (Tables 19 and 20).

Desirable stem height differed by mode, but not by method (Table 19). Plots where stem-foliar herbicides were applied in a nonselective mode had shorter desirable stems compared with plots treated in a selective mode, mean height was 0.8 versus 1.1 m (Tables 19 and 20). The number of desirable stems greater than 1.8 m height was higher for the selective mode versus the nonselective mode, 600 versus 10 stems ha-1 (Tables 19 and 20). Tree stem height was affected by both mode and method. There were less tree stems greater than 1.8 m with the nonselective treatment mode compared with the selective, 280 versus 500 stems ha-1 (Tables 19 and 20). Mean height of tree stems was lower with the nonselective mode compared with the selective mode, 0.9 versus 1.2 m (Tables 19 and 20). Compared with stem-foliar, basal treatment plots had more tree stems greater than 1.8 m and greater than 3.7 m height (Tables 19 and 20).

There were mode and method related differences in cost. Total treatment cost for the selective mode was generally higher than for the nonselective, $\$ 1330$ versus

Table 19. p-values from testing the effects of first conversion cycle herbicide treatments on desirable vegetation and tree stens.

Source of variation	Degrees of freedo	$\begin{gathered} 1987 \\ \text { Stem density } \end{gathered}$		$\begin{gathered} 1987 \\ \text { Mo. Stems }>1.8 \mathrm{~m} \end{gathered}$		$\begin{gathered} 1987 \\ \text { No. stens }>3.7 \mathrm{~m} \end{gathered}$		$\begin{gathered} 1987 \\ \text { Mean height } \end{gathered}$		1986 Percent herbaceous cover
		Desirable	Iree	Desirsble	Tree	Desirable	Tree	Desirable	Tree	
Covariate ${ }^{\text {a }}$	1	0.01	-b	MA	MA	NA	MA	MA	MA	MA
Slock	5	0.0	-	\%	W	un	\%	m	1	und
Mode (Mo)	1	0.93	0.34	0.02	0.10	0	0.35	0.09	0.08	0.74
Method (He)	1	0.31	0.67	0.45	0.15	0	0.19	0.66	0.32	0.55
Mo X Me	1	0.71	0.88	0.52	0.32	0	0.85	0.19	0.54	0.56
Simple effects: ${ }^{\text {c }}$										
B vs SF m/wS	1	-	-	-	-	-	-	0.53	-	-
8 vs SF m/s	1	-	-	-	-	-	-	0.22	-	-
WS vs S w/8	1	-	.	-	-	-	.	0.75	-	-
ws ve Sm w/sf	1	-	-	-	-	-	-	0.04	-	-

- Concomitant varisble for 1987 desifable stem denaity was 1983 desirable stem density.
b_{A} hyphen for the covariate means that the correlation between the concomitant variable and the dependent variable was <0.30, so the covariate was not included in the model; *yphen for the block meons this effect was not tested; mA -- not applicable, no concomitant variable was available for use in the analysis of covariance. A hyphen for the contrast means these effects were not tested.
c Treatments: MS -- nonselective, S .. selective, B .- basal, SF .. stem-foliar, w/ .- within.

Table 20. Mean desirable and tree stem density, number of stems greater than 1.8 m, number of stens greater than 3.7 m, height, and percent herbaceous cover for basal and stem-fotiar herbicide treatment schemes at the end of the first conversion cycle.

Treatment ${ }^{\text {a }}$		$\begin{aligned} & \text { Sample } \\ & \text { size } \\ & (\mathrm{n}) \end{aligned}$	$\begin{gathered} 1987 \\ \text { Sten density } \end{gathered}$		$\begin{gathered} 1987 \\ \text { Mo. stems } \\ \text { > } 1.8 \mathrm{~m} \end{gathered}$		$\begin{gathered} 1987 \\ \text { No. stens } \end{gathered}>3.7 \mathrm{~m}$		1987 Meen height		1986 total percent herbeceous cover
Mode	Method		Desirable	Tree	Desirable	Tree	Desirsble	Tree	Desirable	Tree	
					[stems				-	-	
Unediusted ${ }^{\text {b }}$											
MS	8	6	${ }_{(2440)^{5}}$	$\begin{aligned} & 3990 \\ & (470) \end{aligned}$	$\begin{gathered} 7 \\ (5) \end{gathered}$	$\begin{gathered} 300 \\ (200) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 10 \\ (10) \end{gathered}$	$\begin{gathered} 0.9 \\ (0.1) \end{gathered}$	$\begin{gathered} 9.0 \\ (0.1) \end{gathered}$	$\begin{aligned} & 109 \\ & (11) \end{aligned}$
ws	Sf	6	$\begin{gathered} 6070 \\ (3220) \end{gathered}$	$\begin{gathered} 4640 \\ (1590) \end{gathered}$	$\begin{gathered} 20 \\ (20) \end{gathered}$	$\begin{gathered} 250 \\ (150) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 0.8 \\ (0.1) \end{gathered}$	$\begin{gathered} 0.8 \\ (0.2) \end{gathered}$	$\begin{aligned} & 126 \\ & (18) \end{aligned}$
5	B	6	$\begin{gathered} 6100 \\ \mathbf{(3 7 8 0)} \end{gathered}$	$\begin{gathered} 5970 \\ (1070) \end{gathered}$	$\begin{gathered} 440 \\ (220) \end{gathered}$	$\begin{gathered} 670 \\ (170) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 20 \\ (20) \end{gathered}$	$\begin{gathered} 1.0 \\ (0.1) \end{gathered}$	$\begin{gathered} 1.2 \\ (0.1) \end{gathered}$	$\begin{aligned} & 113 \\ & (12) \end{aligned}$
S	SF	$6(5)^{\text {d }}$	$\begin{gathered} 6500 \\ (2780) \end{gathered}$	$\begin{gathered} 7360 \\ (4380) \end{gathered}$	$\begin{gathered} 770 \\ (420) \end{gathered}$	$\begin{gathered} 320 \\ (100) \end{gathered}$	$\begin{gathered} 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 1.2 \\ (0.2) \end{gathered}$	$\begin{gathered} 1.2 \\ (0.1) \end{gathered}$	$\begin{aligned} & 110 \\ & (20) \end{aligned}$
Adiusted											
HS	0	6	$\begin{gathered} 5090 \\ (2300) \end{gathered}$	-e	-	*	-	-	-	-	-
WS	SF	6	$\begin{gathered} 6720 \\ (2320) \end{gathered}$	-	-	-	-	-	-	-	-
s	B	6	$\begin{gathered} 4770 \\ (2370) \end{gathered}$	-	-	-	-	-	-	-	*
s	Sf	6(5)	$\begin{gathered} 7610 \\ \text { (2350) } \end{gathered}$	-	-	-	-	-	-	-	-

- Treatments: wS .- norselective, s .- selective, B -- basal, SF .. stem-foliar.
b Unedjusted means are calculated directly from the plot data, adjusted means are from the analysis of covarimec.
C Mubers in parentheses below the means are stondard errors.
d Mumbers in parentheses is the sample size for herbeceous cover, it is lawer because one plot was not measured.
e A hyphen for adjusted means means that analysis of covariance wes not used.
$\$ 1160 \mathrm{ha}^{-1}$, due to higher costs for labor and equipment (Table 21 and 22). Basal herbicide treatments costs were higher than stem-foliar, $\$ 1430$ versus $\$ 1090 \mathrm{ha}^{-1}$, due to differences in labor, equipment and materials (Tables 21 and 22). Material costs varied as a function of treatment mode; basal and stem-foliar material costs were the same in the nonselective mode, basal material costs were higher than stem-foliar in the selective mode (Tables 21 and 22).

Because there was equal reduction of tree stems and maintenance of desirable stem densities, the number of tree stems greater than 1.8 m and greater than 3.7 m was higher with the basal treatment, and basal treatment costs were nearly double that of stem-foliar, the most cost effective herbicide treatment is stem-foliar. The most cost effective mode of application depends on the importance of maintaining tall desirable plants versus reducing tree size. The nonselective mode had both shorter desirable plants and trees.

Study $4--$ Second Conversion cycle Herbicide Treatment Methods

There were no mode related differences for tree density and herbaceous cover (Table 23). The selective mode had higher desirable density as compared to the nonselective mode, 4270 versus 590 stems ha-1 (Tables 23 and 24).

There were no method related differences for desirable stems or herbaceous cover (Table 23). There

Table 21. P-values from testing the effects of first conversion cycle herbicide treatments on costs.

		1984			
Source of variation	Degrees of freedorn	Labor	Equipment	Material	Total
Covariateb	1	0.01	0.01	<0.01	<0.01
Block	5	$-c$	-	-	-
Mode (MO)	1	0.01	0.03	0.71	0.12
Method (Me)	1	0.02	0.02	0.07	0.02
Mo X Me	1	0.67	0.66	0.06	0.22

Simple effects:

B vs SF W/N	1	-	-	0.96	-
B Vs SF W/S	1	-	-	0.02	-
N Vs S W/B	1	-	-	0.22	-
N vs S W/SF	1	-	-	0.11	-

a Simples effects abbreviations: B -- basal, SF -- stemfoliar, w/ -- within, N-- nonselective, s-- selective.
b The concomitant variable was 1987 tree stem density for the selective treatment plots and 1987 tree plus desirable stems for the nonselective treatment plots.

C A hyphen for the block effect means this effect was included in the model, but not tested. A hyphen for the contrast effects means this effect was not tested because the main effect interaction was not significant ($\mathrm{P}>0.20$).

Table 22. Mean costs for the firat conversion cycle herbicide treatments.

1984 Costs

a Treatments: NS -- nonselective, S-- selective, B-- basal, $S F$ -- stem-foliar.
b Unadjusted means are calculated directly from the plot data, adjusted means are from the analysis of covariance.

C Numbers in parentheses below the means are standard errors.

Table 23. P-values from testing the effects of second conversion cycte herbicide treatments on desirable and undesirable vegetation.

Source of variation ${ }^{\text {a }}$	$\begin{aligned} & \text { Degrees } \\ & \text { of } \\ & \text { freedon } \end{aligned}$	$\begin{gathered} 1990 \\ \text { Sten density } \end{gathered}$		$\begin{gathered} 1990 \\ \text { No. Stens }>1.8 \mathrm{~m} \end{gathered}$		$\begin{gathered} 1990 \\ \text { Mo. stems } \times 3.7 \mathrm{~m} \end{gathered}$		$\begin{gathered} 1990 \\ \text { Mean height } \end{gathered}$		1990 Percent herbaceous cover
		Desirable	Tree	Desirable	Tree	Desirable	Tree	Desirable	Iree	
Covariate ${ }^{\text {b }}$	1	0.10	0.52	<0.01	<0.01	-c	-	0.31	0.04	0.69
Block	5	-	-	-	-	-	-	-	-	-
Mode (Mo)	1	0.19	0.73	0.75	0.10	0.15	0.34	0.25	0.94	0.35
Method (He)	1	0.93	<0.01	0.26	0.41	0.56	0.51	0.19	0.27	0.67
Mo X Me	1	0.\%	0.74	0.34	0.17	0.93	0.72	0.75	0.40	0.22
Simple effects:										
B vs SF w/ws	S 1	-	-	-	0.13	-	-	-	-	-
8 vs SF m / s	1	-	-	-	0.70	-	-	-	-	\bullet
MS vs $5 \mathrm{~m} / \mathrm{B}$	1	-	-	-	0.08	-	.	-	-	.
WS ve $\mathrm{Sm} / \mathrm{SF}$	F 1	-	-	-	0.63	-	-	-	-	\cdot

[^6]Table 24. Meon desirable and tree stem density, nuber of stens greater than 1.8 m , muber of stens greater than 3.7 m, height, and percent herbaceous cover for herbicide trestments at the end of the second conversion cycle.

Treatment ${ }^{\text {a }}$		Sanple size (n)	$\begin{gathered} 1990 \\ \text { Stem density } \end{gathered}$		$\begin{gathered} 1990 \\ \text { Mo. } \text { Stens }>1.8 \mathrm{~m} \end{gathered}$		$\begin{gathered} 1990 \\ \text { Mo. stens } \end{gathered} 3.7 \text { m }$		1990 Hean height		1989 Percent herbeceous cover
Mode	Method		Desirable	Tree	Desirable	Tree	Desirable	Tree	Desirable	Tree	
					_ stem	-1			-	-	
Unodiusted ${ }^{\text {d }}$											
MS	8	3 c	$\begin{aligned} & 1290 \\ & (590)^{\mathrm{d}} \end{aligned}$	$\begin{aligned} & 1900 \\ & (840) \end{aligned}$	$\underset{(0)}{0}$	$\begin{gathered} 20 \\ (20) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 0.8 \\ (0.1) \end{gathered}$	$\begin{gathered} 0.8 \\ (0.1) \end{gathered}$	76 (4)
WS	SF	6	$\begin{aligned} & 650 \\ & (340) \end{aligned}$	$\begin{gathered} 830 \\ (360) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 5 \\ (5) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 0.5 \\ (0.1) \end{gathered}$	$\begin{gathered} 0.5 \\ (0.1) \end{gathered}$	70 (4)
s	B	4	$\begin{gathered} 6240 \\ (5220) \end{gathered}$	$\begin{aligned} & 2320 \\ & (530) \end{aligned}$	$\begin{gathered} 960 \\ (890) \end{gathered}$	$\begin{gathered} 300 \\ (270) \end{gathered}$	$\begin{gathered} 20 \\ (20) \end{gathered}$	$\begin{gathered} 20 \\ (20) \end{gathered}$	$\begin{gathered} 1.0 \\ (0.2) \end{gathered}$	$\begin{gathered} 0.9 \\ (0.2) \end{gathered}$	61 (9)
\$	SF	6	$\begin{gathered} 4360 \\ (2480) \end{gathered}$	$\begin{gathered} 910 \\ (350) \end{gathered}$	$\begin{gathered} 570 \\ (320) \end{gathered}$	$\begin{gathered} 50 \\ (20) \end{gathered}$	$\begin{gathered} 20 \\ (20) \end{gathered}$	$\begin{gathered} 10 \\ (10) \end{gathered}$	$\begin{gathered} 1.0 \\ (0.3) \end{gathered}$	$\begin{gathered} 0.9 \\ (0.2) \end{gathered}$	$\begin{aligned} & 74 \\ & \text { (5) } \end{aligned}$
Adiusted											
WS	B	3	$\begin{gathered} 400 \\ (3560) \end{gathered}$	$\begin{aligned} & 2400 \\ & (400) \end{aligned}$	$\begin{gathered} 490 \\ (370) \end{gathered}$	$\begin{aligned} & 250 \\ & (70) \end{aligned}$	-e	-	$\begin{gathered} 1.0 \\ (0.2) \end{gathered}$	$\begin{gathered} 0.9 \\ (0.2) \end{gathered}$	$\begin{aligned} & 75 \\ & (7) \end{aligned}$
WS	SF	6	$\begin{gathered} 820 \\ (2150) \end{gathered}$	$\begin{gathered} 860 \\ (270) \end{gathered}$	$\begin{aligned} & 420 \\ & (250) \end{aligned}$	$\begin{aligned} & 100 \\ & (50) \end{aligned}$	-	-	$\begin{gathered} 0.6 \\ (0.2) \end{gathered}$	$\begin{gathered} 0.7 \\ (0.1) \end{gathered}$	$\begin{aligned} & 71 \\ & \text { (5) } \end{aligned}$
\$	B	4	$\begin{gathered} 4200 \\ (2990) \end{gathered}$	$\begin{aligned} & 2590 \\ & (370) \end{aligned}$	$\begin{aligned} & 670 \\ & (320) \end{aligned}$	$\begin{gathered} 20 \\ (70) \end{gathered}$	-	-	$\begin{gathered} 1.2 \\ (0.2) \end{gathered}$	$\begin{gathered} 0.8 \\ (0.2) \end{gathered}$	63 (6)
\$	SF	6	$\begin{gathered} 4350 \\ (2150) \end{gathered}$	$\begin{aligned} & 860 \\ & (270) \end{aligned}$	$\begin{gathered} 20 \\ (270) \end{gathered}$	$\begin{gathered} 70 \\ (50) \end{gathered}$	-	-	$\begin{gathered} 0.9 \\ (0.2) \end{gathered}$	$\begin{gathered} 0.8 \\ (0.1) \end{gathered}$	$\begin{aligned} & 72 \\ & (5) \end{aligned}$

- Treatments: WS .- nonselective, s -- selective, B -- bosal, sF -- stem-foliar.
b Unedjusted means are calculated directly from the plot data, adjusted means are from the analysis of covariance.
c Smaple size less than six are due to besal treatment plots not receiving herbicide treatments.
d wubers in parentheses below the means are standard errors.
- A hyphan for edjuared moens mems that analysis of covariance was not used.
were method related differences in tree stem density; basal treatment plots had more tree stems than stemfoliar, 2120 versus 890 stems ha~1 (Tables 23 and 24). Higher tree densities with basal herbicide treatments may be attributed to a higher proportion of "misses" during application for basal herbicide treatment versus stemfoliar. Because each stem needs to be individually treated in basal schemes, as compared with the groups of stems that can be treated at one time with stem-foliar sprays, there is a greater chance for misses with basal applications than with stem-foliar.

In a study of cost effectiveness on maintained ROWs, percent of tree misses for basal versus stem-foliar was 6 versus 5 (ESEERCO, 1984). Since the difference in the percentage of misses in this study were relatively low, only 1 \%, the higher density of trees in the current study may be attributed to lower herbicide efficacy for the basal treatment versus the stem-foliar.

Density of desirable stems greater than 3.7 mas higher for the selective mode compared with the nonselective mode, 10 versus 0 stems ha ${ }^{-1}$ (Table 23 and 24). Mean desirable height was higher for the basal treatment plots than for stem-foliar, 0.9 versus 0.8 m (Tables 23 and 24). The was no mode or method effects on the number of desirable stems greater than 1.8 m tall. The number of tree stems greater than 1.8 m tall was higher for the nonselective versus the selective mode within the basal treatment only, 300 versus 20 stems ha-1
(Table 23 and 24). Basal treatment plots had more tree stems greater than 1.8 m tall compared with stem-foliar, but only within the nonselective mode. There was no mode or method effect on the number of trees greater than 3.7 m or for mean tree stem height (Table 23).

There was no mode related differences in treatment costs. Costs for basal treatments were higher than for stem-foliar, $\$ 620$ versus $\$ 350 \mathrm{ha}^{-1}$, due to $h i g h e r$ cost for labor, equipment and materials (Tables 25 and 26).

Given that there were more desirables with the selective mode, there was a greater reduction in tree stems with stem-foliar schemes, number of desirable stems greater than 3.7 m height was highest for the selective mode, number of tree stems greater than 1.8 m tall was highest with the nonselective mode, and basal costs were nearly double that of stem-foliar, selective stem-foliar is the most cost effective herbicide scheme.

Study 5 -- Second Conversion Cycle Herbicide Versus Nonherbicide Treatment Methods

Results for herbicide treatment comparisons for desirable and tree stem densities in Study 5 were generally the same as reported for study 4. There was no difference in desirable and tree plants between basal and stem-foliar herbicide treatment schemes (Tables 27 and 28).

Desirable stem densities did not differ among Study 4 treatments (Tables 27 and 28). Desirable stems on

Table 25. P-values from testing the effects of second conversion cycle herbicide treatments on costs.

		1988 Cost			
Source of variationa	Degrees of freedom	Labor	Equipment	Material	Total
Covariateb	1	$-c$	-	0.05	-
Block (Mo)	5	-	-	-	-
Mode (Mo) (Me)	1	0.35	0.83	0.90	0.60
Method	1	<0.01	<0.01	0.02	<0.01
Mo X Me	1	0.24	0.14	0.64	0.48

Simple effects:

B vs SF W/N	1	-	<0.01	-	-
B vs SF W/S	1	-	0.23	-	
N vs S W/B	1	-	0.23	-	-
N vs S W/SF	1	-	0.36	-	

[^7]b The concomitant variable was 1987 tree stem density for the selective treatment plots and 1987 tree plus desirable stem density for the nonselective treatment plots.

C A hyphen for the covariate means that the correlation between the concomitant variable and the dependent variable was <0.30, so the covariate was not included in the model; a hyphen for the block means this effect was not tested. A hyphen for the simple effect means this effect was not tested because the interaction was not significant ($P>0.20$).

Table 26. Mean costs for the pecond conversion cycle herbicide treatments.

Treatment ${ }^{\text {a }}$		$\begin{gathered} \text { Sample } \\ \text { eize } \\ \text { (n) } \end{gathered}$	1988 Coats				
Mode	Method		Labor	Equipment	Materials	Total	
			dollars ha^{-1}				
Unadtusted ${ }^{\text {b }}$							
NS	B	6	$\begin{aligned} & 400 \\ & (50)^{c} \end{aligned}$	$\begin{gathered} 80 \\ (10) \end{gathered}$	$\begin{aligned} & 180 \\ & (30) \end{aligned}$	$\begin{aligned} & 660 \\ & (90) \end{aligned}$	
NS	SF	6	$\begin{aligned} & 190 \\ & (20) \end{aligned}$	$\begin{aligned} & 40 \\ & (5) \end{aligned}$	$\begin{aligned} & 120 \\ & (30) \end{aligned}$	$\begin{aligned} & 340 \\ & (40) \end{aligned}$	
s	B	6	$\begin{aligned} & 340 \\ & (20) \end{aligned}$	$\begin{aligned} & 70 \\ & (5) \end{aligned}$	$\begin{aligned} & 170 \\ & (40) \end{aligned}$	$\begin{aligned} & 580 \\ & (50) \end{aligned}$	
s	SF	6	$\begin{aligned} & 200 \\ & (20) \end{aligned}$	$\begin{gathered} 50 \\ (10) \end{gathered}$	$\begin{aligned} & 100 \\ & (20) \end{aligned}$	$\begin{aligned} & 350 \\ & (30) \end{aligned}$	
Adjusted							
NS	B	6	-d	$\begin{aligned} & 200 \\ & (20) \end{aligned}$	-	-	
NS	SF	6	-	$\begin{aligned} & 100 \\ & (20) \end{aligned}$	-	-	
S	B	6	-	$\begin{aligned} & 170 \\ & (20) \end{aligned}$	-	-	
s	SF	6	-	$\begin{aligned} & 120 \\ & (20) \end{aligned}$	-	-	
a Treatments: NS -- nonselective, S-- selective, B-- basal, $S F$ -- -tem-foliar. b Unadjusted means are calculated directly from the plot data, adjusted means are from the analysis of covariance. C Numbers in parentheses below the means are standard errors. d A hyphen for adjusted means means that analysis of covariance was not used.							

Table 27. P-values from testing the effects of second conversion cycle herbicide and non-herbicide treatments on desirable vegetation and tree stens.

Source of variation ${ }^{\text {a }}$	$\begin{aligned} & \text { Degrees } \\ & \text { of } \\ & \text { freedom } \end{aligned}$	$\begin{gathered} 1990 \\ \text { Sten density } \end{gathered}$		$\begin{gathered} 1990 \\ \text { No. Stems }>1.8 \mathrm{~m} \end{gathered}$		$\begin{gathered} 1090 \\ \text { No. stens }>3.7 \end{gathered}$		$\begin{aligned} & 1990 \\ & \text { Mean height } \end{aligned}$	
		Desirable	Tree	Desirable	Tree	Desirable	Tree	Desirable	Tree
Covariate ${ }^{\text {b }}$	1	Ss ${ }^{\text {c }}$	-d	SS	0.06	MA	-	Ss	<0.01
Method	3	0.63	<0.01	0.33	0.03	0.61	0.37	<0.01	<0.01
Contrasts:									
B ws. Sf	1	0.66	0.78	0.40	0.87	0.98	0.24	0.39	0.27
Herb. vs. 8 H	1	0.47	<0.01	0.14	0.04	0.26	0.19	0.14	0.04
Herb. ws. G	1	0.49	0.21	0.15	0.34	0.31	0.23	<0.01	<0.01
6 vs. 8 H	1	0.22	0.02	0.91	0.01	1.00	1.00	<0.01	<0.01

B Ireatments: s-- basal, SF .- stem-foliar, Herb, -- herbicide, basel combined with stem-folfar, BH ․- brush hogging, G - grubbing.
b The concomitant variable for number of tree stems greater than 1.8 m tall was 1987 number of tree stens greater than 1.8 m tall, for tree mean height it was 1987 tree mean height.

C SS for the covariate means this effect was originally included in the model, but the slope (interaction effect: covariate*method) was significant ($P \leq 0.20$) and accurate interpretation of analysis of covariance results could not be made.
d A hyphen for the covariate mears that the correlation between the concontitant varisble and the dependent variable was s0.30, so the covariate was not included in the model.

Table 28. Mean desirable and tree stem density, number of stems greater than 1.8 m , number of stems greater than 3.7 m , and stem height for the second conversion cycle herbicide and non-herbicide treatments.

Treatment	$\begin{aligned} & \text { Sampte } \\ & \text { size } \\ & \text { (n) } \end{aligned}$	$\begin{gathered} 1990 \\ \text { stem density } \end{gathered}$		$\begin{gathered} 1990 \\ \text { No. stems }>1.8 \mathrm{~m} \end{gathered}$		$\begin{gathered} 1990 \\ \text { Wo. stems }>3.7 \mathrm{~m} \end{gathered}$		$\begin{gathered} 1990 \\ \text { Mean height } \end{gathered}$	
		Desírable	Tree	Desiruble	Tree	Desirable	Tree	Desirable	Tree
				[stem	1			-	
Unsodiusted									
Basal	7	$\begin{gathered} 4120 \\ (2960)^{\mathrm{t}} \end{gathered}$	$\begin{aligned} & 2150 \\ & (440) \end{aligned}$	$\begin{gathered} 540 \\ (520) \end{gathered}$	$\begin{gathered} 170 \\ (150) \end{gathered}$	$\begin{aligned} & 10 \\ & (10) \end{aligned}$	$\begin{gathered} 10 \\ (10) \end{gathered}$	$\begin{gathered} 0.9 \\ (0.1) \end{gathered}$	$\begin{gathered} 0.9 \\ (0.1) \end{gathered}$
Stem-foliar	12	$\begin{gathered} 2490 \\ (1310) \end{gathered}$	$\begin{gathered} 860 \\ (250) \end{gathered}$	$\begin{gathered} 270 \\ (170) \end{gathered}$	$\begin{gathered} 20 \\ (10) \end{gathered}$	$\begin{gathered} 10 \\ (10) \end{gathered}$	$\begin{gathered} 5 \\ (5) \end{gathered}$	$\begin{gathered} 0.8 \\ (0.2) \end{gathered}$	$\begin{gathered} 0.7 \\ (0.1) \end{gathered}$
Grubbing	8	$\begin{aligned} & 1010 \\ & (300) \end{aligned}$	$\begin{gathered} 6720 \\ (3930) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 0.3 \\ (0.0) \end{gathered}$	$\begin{gathered} 0.3 \\ (0.0) \end{gathered}$			
Brush hogging	11	$\begin{gathered} 5510 \\ (3660) \end{gathered}$	$\begin{aligned} & 17490 \\ & (4500) \end{aligned}$	$\begin{gathered} 20 \\ (20) \end{gathered}$	2100 (360)	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 1.1 \\ (0.1) \end{gathered}$	$\begin{gathered} 1.2 \\ (0.1) \end{gathered}$
Adiusted									
Basat	7	. 6	-	-	$\begin{gathered} 440 \\ (590) \end{gathered}$	-	-	-	$\begin{gathered} 0.9 \\ (0.1) \end{gathered}$
Stem-folior	12	-	-	-	$\begin{gathered} 320 \\ (470) \end{gathered}$	-	-	-	$\begin{gathered} 0.8 \\ (0.1) \end{gathered}$
Grubbing	8	*	*	-	$\begin{aligned} & -300 \\ & (540) \end{aligned}$	*	-	*	$\begin{gathered} 0.2 \\ (0.1) \end{gathered}$
Brush hogging	11	-	-	-	$\begin{aligned} & 1800 \\ & (470) \end{aligned}$	-	-	-	$\begin{gathered} 1.1 \\ (0.1) \end{gathered}$

- Unadjusted mean are calculated directly from the plot dote, adjusted means tre from the analysis of covariance.
b Mubers in parentheses below the means are stendard errors.
c A hyphen for adjusted means means that analysis of covariance was not used.
brush hogged plots were, on average, taller than on herbicide treated plots, 1.1 versus 0.8 m , but there were more desirable stems greater than 1.8 m tall on herbicide treated plots as compared with brush hogged plots, 370 versus 20 stems ha ${ }^{-1}$ (Tables 27 and 28). Desirable stems on grubbed plots were shorter, on average, than on plots treated with herbicides, 0.3 versus 0.8 m , or brush hogged, 0.3 versus 1.1 m (Tables 27 and 28). Additionally, there were less desirable stems greater than 1.8 m tall on grubbed plots compared with herbicide treated plots, 0 versus 370 stems ha-1 (Tables 27 and 28) -

Tree stem densities were higher for the brush hogged plots (17490 stems $h a^{-1}$) as compared with grubbed plots (6720 stems $h a^{-1}$) and the herbicide treated plots (1340 stems ha-1, Tables 15 and 16). There was no difference in tree stem densities between grubbing and herbicide treatments (Table 27 and 28).

Number of tree stems greater than 1.8 m tall was greater for brush hogged plots (1800 stems ha-1) than for herbicide treated (360 stems ha-1) or grubbed (0 , note that the adjusted mean value is negative) plots (Tables 27 and 28). Herbicide treated plots had more trees stems greater than 3.7 m tall as compared with brush hogged plots, however, there were only 10 and 5 stems per acre for the basal and stem-foliar plots, respectively (Table 27 and 28). Average height of tree stems was greatest for brush hogged plots, followed by herbicide treatment
and grubbing (Tables 27 and 28).
Total costs for herbicide treated plots was greatest for basal schemes as compared with stem-foliar, due to higher costs for labor and materials (Tables 29 and 30). These results are the same as reported in Study 4 , except in Study 4 equipment differences were also shown to contribute to total treatment cost differences between basal and stem-foliar schemes.

Grubbing was the most costly treatment due to high cost for labor and equipment (Tables 29 and 30). Seeding and fertilization costs, $\$ 300$ and $\$ 110 \mathrm{ha}^{-1}$, respectively (Appendix Table 12), were not added to the cost of grubbing. Addition of these costs would not have changed the cost analysis in terms of interpreting treatment effects -- grubbing would still be the most expensive treatment, however, the magnitude of cost differences would have been different, grubbing costs would increase by 28 \% It is important to recognize that the operational use of grubbing would likely include seeding and fertilization, and would therefore be more costly than reported in this study.

Brush hogging was more costly than herbicide treatments, $\$ 670$ versus $\$ 480 \mathrm{ha}^{-1}$ due to higher costs for equipment (Tables 29 and 30).

Since grubbing reduced desirable stem size, increased tree density, and was two to four times more costly than the otlier treatments, it is not a cost

Table 29. P-values from testing the effects of aecond conversion cycle herbicide and non-herbicide treatmente on costa.

Source of variation	Degrees of freedom	1988 Costr			
		Labor	Equipment	Materials	Total
Covariate ${ }^{\text {a }}$	1	-b	0.51	-	0.86
Method	3	<0.01	<0.01	<0.01	<0.01
Contrasts: ${ }^{\text {c }}$					
B Vs. SF	1	<0.01	0.62	<0.01	0.02
Herb. va. BH	H 1	0.31	<0.01	<0.01	0.06
Herb, va. ${ }^{\text {a }}$	1	<0.01	<0.01	<0.01	<0.01
G VE. BH	1	<0.01	<0.01	1.00	<0.01

a The concomitant variable was 1987 tree stem density for the selective treatment plots and 1987 tree stem plus desirable stem density for the nonselective treatment plots.
b A hyphen for the covariate meana that the correlation between the concomitant variable and the dependent variable was <0.30, so the covariate was not included in the model; a hyphen for the block means this effect was not tested.

C Treatmente: B -- babal, SF -- gtem-foliar, Herb. -- herbicide, basal combined with atem-foliar, BH -- brush hogging, G-- grubbing.

Table 30. Maan coste for the second conversion cycle herbicide and non-herbicide treatments.

Treatments ${ }^{\text {a }}$	1988 Coste			
	Labor	Equipment	Materials	Total
	dollare ha^{-1}			
Unadiugted ${ }^{\text {b }}$				
Basal 12	$\begin{aligned} & 370 \\ & (20) \end{aligned}$	$\begin{aligned} & 70 \\ & (5) \end{aligned}$	$\begin{aligned} & 170 \\ & (20) \end{aligned}$	$\begin{aligned} & 620 \\ & (50) \end{aligned}$
Stem-foliar 12	$\begin{aligned} & 200 \\ & (10) \end{aligned}$	$\begin{gathered} 50 \\ (100) \end{gathered}$	$\begin{aligned} & 100 \\ & (20) \end{aligned}$	$\begin{aligned} & 350 \\ & (20) \end{aligned}$
Grubbing 8	$\begin{aligned} & 490 \\ & (50) \end{aligned}$	$\begin{gathered} 990 \\ (100) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{aligned} & 1480 \\ & (150) \end{aligned}$
Brueh hogging 12	$\begin{aligned} & 320 \\ & (50) \end{aligned}$	$\begin{aligned} & 320 \\ & (50) \end{aligned}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 640 \\ (100) \end{gathered}$
Adjusted				
Basal 12	_d	$\begin{gathered} 70 \\ (50) \end{gathered}$	-	$\begin{aligned} & 620 \\ & (70) \end{aligned}$
Stem-foliar 12	-	$\begin{gathered} 50 \\ (50) \end{gathered}$	-	$\begin{aligned} & 350 \\ & (70) \end{aligned}$
Grubbing 8	-	$\begin{aligned} & 990 \\ & (50) \end{aligned}$	-	$\begin{aligned} & 1510 \\ & \{100 \end{aligned}$
Brush hogging 12	-	$\begin{aligned} & 320 \\ & (50) \end{aligned}$	-	$\begin{aligned} & 670 \\ & (70) \end{aligned}$

[^8]effective treatment for the second conversion cycle. Brush hogging had higher costs than herbicide treatments, it reduced desirable plant size and increased the number and mean size of trees; therefore, it is not a cost effective treatment. Herbicide treatments were cost effective as compared to grubbing and brush hogging because desirable plants were kept constant in density, tree stem densities were reduced, and costs were relatively low.

Number of tree stems greater than 3.7 m tall was highest on the herbicide treated plots. While the total number of these tall stems was low, they could grow tall enough during the next treatment cycle to cause a ground= line fault on a lower voltage line. Providing safe and reliable transmission of electricity is the most important benefit derived from ROWs. The cost associated with unsafe and unreliable transmission of electricity are not calculated in this study, but can be judged to be very high. If the "escaped" trees associated with the herbicide treatments are important, if they have high potential for affecting safety and reliability, the presence of these trees could alter the interpretation of cost effectiveness. For example, brush hogging had higher costs compared with the herbicide treatments; however, there were no tree stems greater than 3.7 m . In this regard, brush hogging could be considered a more effective treatment.

It should be noted that on an operational basis
escaped trees that have the potential to cause a groundline fault are avoided by contractually mandating that the crews performing vegetation management retreat any missed trees.

Other Cost Effectiveness Studies

Direct costs of ROW vegetation management should be studied in the field using rigorous experimental designs and relatively large treatment plots. There have been four field studies outside the current studies that meet these criteria (Table 31). These studies have included cost, effectiveness, or both components together (Table 31). None of these studies examined cost effectiveness of treatment methods during initial clearing through the conversion phase, as was done in the current studies. Bramble and Byrnes (1983) described a 30-year study in Pennsylvania that followed vegetation development in response to different management methods from initial clearing, but they did not include a cost analysis. In New York, the ESEERCO performed a study to evaluate cost and effectiveness of ROW maintenance treatments (ESEERCO, 1984, 1985). In 1987, Bramble and Byrnes (unpublished reports) ${ }^{8}$ initiated two studies in Pennsylvania of cost

[^9]Table 31. Sumary of studies reporting short-term costs, tree density and shrib cover for various right-of-way vegetation management methods.

rable 31 continued.

- Bramble and Byrnes' (1993) study had a randomized block design with four replications, treatment plots were 1 ha in size, reported measuraments were made 14 years ofter treatment, and only tree stew greater then 1 im height were measured; for the Esegico (1984, 1985) study, the experimental design was randomized block with 18 replications, treament plots were 1 ha in size, 4 ft and ist average tree heights were used for presenting direct costs, reported measurements were made 2 years after treatrent, and tree stem density was based on only those stems greater then 1 m height; Brable and Byrnes' 1987 Gemelands restarch was overlain on the 1953 study (Bramble and Byrnes 1983), reported measurements were made 2 years after treatment, and tree stem density was based on only those stoma grewter then 0.3 m height; Brable and Byrnes' 1987 Groenlane study was a randomized block design with three replications, treatment plots were 1 ha in size, reported messurements were mede 1 -year after treatment, and tree stem density mas based on only those stems greater than 0.3 m height.
b A hyphen indicates that these density classes were not studied or that the variable was not measured.
effectiveness during conversion or maintenance phases. The Gamelands 33 research is a continuation of the study initiated in 1953 (Bramble and Byrnes, 1983). The Green Lane research project was similar in scope to Gamelands 33.

Study methods were generally the same for the four studies. Bramble and Byrnes were common researchers to all of these studies. For the ESEERCO $(1984,1985)$ study, Bramble and Byrnes were among the Principal Investigators. All four studies had rigorous field experiments, but had very limited reporting of statistical analyses and results. Objective comparison of treatment methods within and among studies is limited by this lack of information. None of these four studies report individual costs for labor rates, materials or equipment. This limits the interpretation of their results.

Pretreatment tree stem density has a significant effect on treatment cost and effectiveness (ESEERCO, 1984). ESEERCO (1984) divided pretreatment stem densities into three classes to account for this effect -- low (2500 stems h^{-1}), medium (5900 stems ha-1), and high (11100 stems ha^{-1}). Cost comparisons made within these density classes are better than cost comparisons made across density classes.

Comparison of direct cost can be made for most of the studies for basal, stem-foliar, brush hogging, and hand cutting methods. The selective stem-foliar
treatment method is used as the standard as it was present in all studies. It is used as the denominator in calculating ratios of treatment costs.

The basal treatment used in the current studies was a summer high volume; therefore, basal costs for comparison from ESEERCO (1984) are from the summer basal method, from Gamelands 33 the basal costs are from the high volume basal (Table 31).

Costs. For the current study, basal costs averaged nearly twice that of stem-foliar for both conversion cycles. Basal cost in the ESEERCO (1984) study had similar ratios; basal cost were 1.1 to 1.7 times higher than stem-foliar. The Gamelands 33 Research had a ratio of 3.7 between basal and stem-foliar (Table 31). The consistent high ratio between basal and stem-foliar direct costs among the studies indicates that relative cost comparisons within and among studies are comparably accurate. Although actual costs per treatment may differ among studies, the cost ratios appear to be relatively constant.

Brush hogging costs were variable among the studies. The average ratio of costs for the ESEERCO (1984) and Gamelands 33 research was 1.0 , but in some situations brush hogging was less (ratio 0.3) or more (ratio 1.6) costly (Table 31). Brush hogging costs in Study 5 was nearly double that of selective stem-foliar.

Hand cutting costs were variable among studies.

ESEERCO reported hand cutting costs were less than stemfoliar (ratio 0.4 to 0.7). Conversely, Gamelands 33 showed hand cutting costs to be nearly five times that of stem-foliar. Green Lanes had very high hand cutting costs ($\$ 3830 \mathrm{ha}^{-1}$) for the high density class, nearly two times that of stem-foliar.

Hand cutting costs for the current study were done only in the initial clearing phase; therefore, they are not directly comparable with the other studies.

Direct costs were found to vary as a function of treatment method, but also clearly varied as a function of the study. Basal cost were shown to be consistently higher than stem-foliar. Brush hogging costs were variable. In some studies, it was less than stem-foliar, in others, it was equal to or greater than stem-foliar. Hand cutting cost was highly variable.

It is important to note that the literature (and the current study) has presented only short-term costs. The costs reported in Table 31 are the costs of a single treatment. It would be better to compare costs among treatments over the long-term. "The concept of longterm cost ... recognizes that vegetation control is a continuous process, that the type of treatment will influence the cost and timing of the next treatment, and that the most economical method of ROW management is not necessarily the one that results in the lowest cost for a single treatment" (from ESEERCO, 1984, p. 3-1).
Treatment cycle lengths are the critical consideration for measuring long-term costs. Only one study included treatment cycle length measurements (ESEERCO, 1989). Hand cutting was shown to have relatively short cycle lengths compared to selective and nonselective herbicide treatments. Brush hogged plots had cycle lengths comparable to the plots treated with herbicides.Effectiveness. Effectiveness comparisons are, bydefinition, based on relative tree stem and desirablestem densities among treatments. A treatment thatcreates plant communities that persistently haverelatively low tree density and high desirable stemdensity is more effective than a treatment with highertree density and lower desirable density.In Study 4, there was no difference between basaland stem-foliar schemes during the first conversioncycle. Ratios were 0.8 and 0.9 for tree and desirablestem density, respectively, between basal and stem-foliar. For the second conversion cycle, tree densitieswere three times higher for basal compared to stem-foliar. ESEERCO (1985) found that basal tree stemdensities were 1.0 to 1.7 times higher than stem-foliar(Table 31). In Gamelands 33 , the ratio was 1.9 betweenbasal and stem foliar for tree stems (Table 31).Desirable plant community values from the ESEERCO andGamelands 33 research were reported as percent cover
(Table 31). Desirable cover was reported to be higher with basal than with stem-foliar, attributed to overspraying with stem-foliar treatment methods.

Tree stem densities for brush hogged plots was found to be higher than stem-foliar in the ESEERCO (ratio 2.5 to 8.7) and Gamelands (ratio 1.1) studies (Table 31). From Study 5, the ratio was 4.2 .

Desirable cover was higher with basal treatment in the ESEERCO study (ratio 1.3) and the Gamelands 33 study (ratio 2.8). For Studies 3 and 4, desirable woody stem density was relatively constant through time for the plots treated with herbicides. It was expected that desirable woody stem density would increase after initial clearing until some constant coverage is achieved. Because individual groups of stems (copses) were measured instead of individual stems, increase or decrease in desirable occupancy of the site may not have been adequately expressed in the current study. Reproduction of woody desirable plants on powerline corridors is generally through root and shoot sprouts (Bramble and Byrnes, 1983). Therefore, while the total number of copses may not increase over time, the total number of stems and total coverage can greatly increase.

SUMMARY

Cost effectiveness studies of ROW vegetation management should account for all direct costs, indirect
costs, and effectiveness considerations. A relatively simply approach was used in the current studies, whereby direct costs were represented by labor, equipment and materials costs, and indirect direct costs were surrogately accounted for by measures of effectiveness. Effectiveness was viewed as the balancing of tree stem density control with the promotion of woody shrubs and other desirables. A decrease in tree stem density and an increase (or at least maintenance) of woody desirable stems was a positive measure of effectiveness. Right-ofway plant communities dominated by woody desirables are commonly viewed as being the best community for providing safe and reliable transmission of electricity, ancillary wildife and aesthetics values, with relatively little management inputs. Observations of reduced tree density in all of the studies with the use of herbicides indicates that ROW vegetation management is at least "setting the stage" for the promotion of these desirable communities and the production of these necessary and ancillary values.

In summary, the series of cost effectiveness studies showed that:

- for the initial clearing phase of the VolneyMarcy ROW vegetation management program, extending one-year after clearing, clear or selective cutting with no herbicide was the most cost effective approach, as contrasted with precut basal or cut stump herbicide schemes.
- for the first cycle during the conversion phase of the Volney-Marcy ROW vegetation management program, extending from 1 to 4 years after clearing, selective or nonselective stem=
foliar herbicide schemes were most cost effective, as contrasted with basal herbicide schemes.
- for the second cycle during the conversion phase of the Volney-Marcy Row vegetation management program, extending from 5 to 7 years after clearing, the selective stem-foliar herbicide scheme was most cost effective, as contrasted with basal herbicide schemes.
In comparing conventional herbicide schemes versus non-herbicide alternatives, it was found that:
- for the second cycle during the conversion phase of the Volney-Marcy ROW vegetation management program, herbicide schemes (stemfoliar and basal) were more cost effective than non-herbicide schemes (grubbing or brush hogging).
Conventional practice for initial clearing of vegetation on powerline corridors in New York is to use a cut stump herbicide scheme (Study 1). Results from the current study show that this is not a cost effective approach. Even when any of the herbicide schemes were used there were very high undesirable stem densities after 1-growing season, over 37000 stems per hectare.
Herbicides were effective in reducing undesirable stump sprouting, but the reduction in stump sprout densities was relatively small compared to the total number of undesirable stems present on the site. Herbicide use during initial clearing of powerline corridors is not effective in situations where there is a high potential for invasion and establishment of trees.
During the conversion phase on powerline corridors, when there are high densities of tree stems (5000 to 37000 stems per hectare as encountered during the conversion
phase of the current study), stem-foliar herbicide schemes are more cost effective than basal herbicide schemes.

Tree stem densities were observed to have decreased during the conversion phase on plots treated with herbicides. A reduction in herbicide use and concomitant reduction in management costs were also observed. Relatively long treatment cycles may now be expected as the Volney-Marcy ROW enters the maintenance phase of management. Further reductions in herbicide use and management costs will be possible during the maintenance phase as tree stem densities decrease, shrub community develop, and treatment cycles are lengthened.

A shift in application mode from nonselective to selective as being most cost effective during the first and second conversion cycles, respectively, was expected. As the number of tree stems is reduced over time, and stable, desirable plant communities are created, a more selective approach can be implemented.

Non-herbicide alternatives, grubbing or brush hogging, for vegetation management on powerline corridors in New York may become increasingly important in the future. Given current vegetation management objectives, and compared with conventional selective herbicide schemes, these approaches are not cost effective. However, if safe and reliable transmission of electricity is the only concern of ROW vegetation managers, and the importance of wildife and aesthetic values is reduced, and stable plant communities are considered not necessary,
non-herbicide schemes could be viewed as cost effective vegetation management alternatives.

FINAL CONSIDERATIONS

Past vegetation management on ROWs in New York State can be categorized into two eras -- preherbicide and herbicide (Figure 8, from Study 1; Nowak et al., 1993). Apparent beginnings of a third era -- the postherbicide era -- has been observed these past few years. This despite the fact that these methods are generally not cost effective (Study 5).

In the preherbicide era, from the early $1900 s$ to the 1950s, the objective that guided vegetation management on electric transmission Rows -- economically create and maintain a corridor for the safe and reliable transmission of electricity -- resulted in two values, safety and reliability.

Since the 1950s, herbicides have provided a cost effective tool for achieving safe and reliable transmission of electricity. Herbicides also provided flexibility in terms of achieving corollary sets of values from Rows, e.g., wildife (Bramble and Byrnes, 1972, 1974, 1991; ESEERCO, 1983a; Bramble et al., 1985), aesthetics (Kenfield, 1966, 1991; Richards, 1973), general conservation values (Niering, 1958), and multiple uses (ESEERCO, 1983b).

A steady integration of a broader set of values derived from Rows began in the 1950 s with the selective use of herbicides and increased through the 1980s (Figure 8). In 1980, these multiple values and selective

MANAGEMENT SCHEME:

YEAR:
VALUES:
ERA:

Figure 8. Changes in management schemes, values and eras of powerline corridor vegetation management in New York through the 20 th century.
approach to herbicide use were incorporated into New York State regulation (de Waal Malefyt, 1984). These regulations were initiated in response to the broadcast method of applying herbicides, which was viewed by the public as environmentally damaging and cost ineffective (Egler and Foote, 1975; de Waal Malefyt, 1984). Since 1980, the principal ROW vegetation management objective has been to remove undesirable plants and promote "the growth of low-growing, relatively stable plant communities that are aesthetically appealing, beneficial to wildife, compatible with system reliability requirements, and need relatively little maintenance over the life of the ROW" (p. 4, Appendix A, NYS Public Service Commission, 1980). A selective herbicide approach was recognized as the "best" approach to achieve these values (de Waal Malefyt, 1984). It is an operationally effective (Study 2) and economical approach (Studies 4 and 5; Abrahamson et al., 1991a,b; Nowak et al., 1992).

A majority of ROWs in New York did receive selective herbicide applications during the $1980 s$ and 1990 s (Study 1). However, since the late 1980s, a shift away from the multiple use approach to ROW vegetation management back to "safe and reliable" value only approach to ROW vegetation management apparently began in New York State (Figure 8). Increased hand cutting, brush hogging, and grub and seeding of ROWs in New York State may indicate a move into a post-herbicide era (Study 1).

Hand cutting, brush hogging, and grub and seeding are
broadcast in nature, similar in effect to the broadcast spraying of herbicides on Rows during the 50s, 60s and 70s. Broadcast herbicide use resulted in Rows with low aesthetic and wildife value (Egler and Foote, 1975). Broadcast non-herbicide treatments could also result in a similar loss of these values. Hand cutting is generally viewed as a selective treatment. However, when viewed over a long time scale, it is more like a broadcast treatment than a selective treatment. Over time, hand cut Rows become dominated by trees through root and shoot sprouting. This leads to a uniform undesirable coverage across a ROW, similar to brush hogging, and a subsequent need to periodically reclear the total Row with a concomitant loss of aesthetic and wildife values.

Public interest for multiple values from ROWs and general concern for herbicides will likely increase in the future. These interests and concerns will create incongruity between vegetation management objectives, as mandated by regulation (de Waal Malefyt, 1984), and the management practices needed to attain those objectives. Selective use of herbicides has been effective at reducing tree stem density over the long-term (Study 2) and is relatively cost effective (Study 5). Non-herbicide alternatives are not effective over the long-term (Study 2) and are not cost effective (Study 5). If desired values from Rows are reduced to the original tandem of "safe and reliable", then non-herbicide schemes may be
considered a viable option. If wildife and aesthetic values are desired from RoWs, maintenance of tree populations at low densities will be necessary, with herbicides a viable managament alternative.

LITERATURE CITED

Abrahamson, L.P., C.A. Nowak, P.M. Charlton, and P.G. Snyder. 1992. Cost effectiveness of herbicide and nonherbicide vegetation management methods for electric utility rights-of-way in the Northeast: State-of-the-art review and annotated bibliography. Niagara Mohawk Power Corporation Final Report, Syracuse, New York.

Abrahamson, L.P., C.A. Nowak, E.F. Neuhauser, C.W. Foreback, H.D. Freed, S.B. Shaheen, and C.H. Stevens. 1991a. Cost effectiveness of utility rights-of-way herbicide treatments. I. Initial clearing. J. Arbor. 17: 325-327.

Abrahamson, L.P., C.A. Nowak, E.F. Neuhauser, C.W. Foreback, H.D. Freed, S.B. Shaheen, and C.H. Stevens. 1991b. Cost effectiveness of utility rights-of-way herbicide treatments. II. First maintenance cycle. J. Arbor. 17: 328-330.

Anonymous. 1987. ROW study points to cost effective management approach. p. 42-43 In March issue, Electrical World.

Ashton, F.M., and A.S. Crafts. 1981. Mode of action of herbicides. John Wiley and Sons, New York.

Auld, B.A., K.M. Menz, and C.A. Tisdell. 1987. Weed control economics. Academic Press, New York.

Bramble, W.C., and W.R. Byrnes. 1972. A long-term ecological study of game food and cover on a sprayed utility right-of-way. Purdue Univ., Agric. Exp. Stn., Res. Bull. No. 885.

Bramble, W.C., and W.R. Byrnes. 1974. Impact of herbicides upon game food and cover on a utility right-of-way. Purdue Univ., Agric. Exp. Stn., Res. Bull. No. 918.

Bramble, W.C. and R.W. Byrnes. 1983. Thirty years of research on development of plant cover on an electric transmission rights-of-way. J. Arbor. 9:67-74.

Bramble, W.C., and W.R. Byrnes. 1991. Impacts of right-of-way maintenance on wildlife. In Proceedings herbicides and right-of-way management: Regulations, use, toxicology, risks, impacts, and alternatives. Albany, NY, Nov. 13-14 1991, Niagara Mohawk Power Corporation, Syracuse, NY.

Bramble, W.C., W.R. Byrnes, and R.J. Hutnik. 1985. Effects of a special technique for right-of-way maintenance on deer habitat. J. Arbor. 11:278-284.

Bramble, W.C., W.R. Byrnes, and R.J. Hutnik. 1990. Resistance of plant cover types to tree seediing invasion on an electric transmission right-of-way. J. Arbor. 16:130-135.

Bramble, W.C., W.R. Brynes, R.J. Hutnik, and S.A. Liscinsky. 1991. Prediction of cover type on rights-ofway after maintenance treatments. J. Abor. 17:38-43.

Brown, D. 1989. The McCowan road right-of-way study: Stump sprouting and suckering, and the development of woody vegetation in the fourth season following cutting. Ontario Hydro Research Division, Report No 89-30-K, Toronto, Canada.

Cochran, w.G. 1957. Analysis of covariance: Its nature and uses. Biometrics 13:261-281.

Connell, J.H., and R.O. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Amer. Natur. 111:1119-1144.

Daar, S. 1991. Vegetation management on rights-of-way: An ecological approach. The IPM Practioner 8:1-7.

Davidson, J.H. 1980. Update of 2,4,5-
Trichlorophenoxyacetic acid --- 2,4,5-T. Indus. Veg., Turf and Pest Manage. 12:4-7.
de Wal Malefyt, J.J. 1984. New York State Public Service Commission's policy on the management of electric transmission rights-of-way vegetation. p. 364-370 In A.F. Crabtree (ed.) Proc. 3rd Symp. Environ. Concerns in Rights-of-way Manage., San Diego, CA, Feb. 15-18, 1982, Mississippi State Univ., Mississippi State, MS.

Dreyer, G.D., and W.A. Niering. 1986. Evaluation of two herbicide techniques on electric transmission rights-ofway: Development of relatively stable shrublands.
Environ. Manage. 10:113-118.
Drury, W.H., and I.C.T. Nisbet. 1973. Succession. The Arnold Arbor. 54:287-324.

EEI. 1990. Statistical yearbook of the electric utility industry. Edison Electric Institute, Publ. No. 019103, Washington, D.C.

Egler, F.E. 1946. Effects of 2,4-D on woody plants in Connecticut. J. For. 45:449-452.

Egler, F.E. 1947. 2,4-D effects in Connecticut vegetation. Ecology 29:382-386.

Egler, F.E. 1948. Herbicide effects in Connecticut vegetation. Ecology 30:248-256.

Egler, F.E. 1953. Vegetation management for rights-of-way and roadsides. p. 299-322 In Smithsonian Institution 1953 Annual Report, Smithsonian Institution, Wash., D.C.

Egler, F.E. 1954. Vegetation science concepts. I. Initial floristic composition, a factor in old-field vegetation development. Vegetatio 4:412-417.

Egler, F.E. 1977. The nature of vegetation. Its management and mismanagement: An introduction to vegetation science. Aton Forest, Norfolk, CN.

Egler, F.E. 1981. R/W management and herbicides: An iatrogenic disease of the technological age, 1949-1979. R.E. Tillman (ed.) Proc. 2nd Symp. Environ. Concerns in Rights-of-way Management, Ann Arbor, MI, Oct. 16-18, 1979, Miss. State Univ., Mississippi State, MS.

Egler, F.E., and S.R. Foote. 1975. Plight of the rightofway domain: Victim of vandalism. Futura Media Services, Mt. Kisco, NY.

ESEERCO. 1977a. Environmental and economic aspects of contemporaneous electric transmission line right-of-way management techniques. Volumes 1, 2 and 3. Empire State Electric Energy Research Corporation, Schenectady, NY.

ESEERCO. 1977b. Environmental and economic aspects of contemporaneous electric transmission line right-of-way management techniques. Recommendations. Empire State Electric Energy Research Corporation, Schenectady, NY.

ESEERCO. 1983a. The effects of right-of-way vegetation management on wildife habitat. Empire State Electric Energy Research Corporation, Research Report EP 82-13, Final Report, Schenectady, NY.

ESEERCO. 1983b. A report on the state-of-the-art of the management of multiple uses of electric transmission line rights-of-way. Empire State Electric Energy Research Corporation, Research Report EP 82-14, Final Report, Schenectady, NY.

ESEERCO. 1984. Cost comparison of ROW treatment methods. Empire State Electric Energy Research Corporation, Research Report EP 80-5, Final Report, Schenectady, NY. ESEERCO. 1985. Long-term right-of-way effectiveness. Empire State Electric Energy Research Corporation, Research Report EP 83-15, Final Report, Schenectady, NY.

ESEERCO. 1989. Right-of-way treatment cycles. Empire State Electric Energy Research Corporation, Research Report EP 84-26, Final Report, Schenectady, NY.

ESEERCO. 1991. Determination of the effectiveness of herbicide buffer zones in protecting water quality on New York State powerline rights-of-way. Empire State Electric Energy Research Corporation, Research Report EP 89-44, Final Report, Schenectady, NY.

Finegan, B. 1984. Forest succession. Nature 312:109-114.
Foreback, C.G. 1971. Monoganela Power's attack on brush. Industrial Veg. Manage. 3:10-13.

Foreback, C.G., and C.H. Stevens. 1985. Transmission ROW management cost effectiveness study. p. 217-218 In Proc. N.E. Weed Sci. Soc.

Forman, R.T.T., and M. Godron. 1986. Landscape ecology. John Wiley and Sons, Inc., New York.

Galvin, M., K.D. Hoover, and M.L. Avery. 1979. Management of transmission line rights-of-way for fish and wildlife. Volume 1: Background Information. U.S. Department of the Interior, Fish and Wildlife Service, Biological Services Program, Report FWS/OBS-79/22.

Gangstad, E.O. (ed.). 1989. Woody brush control. CRC Press, Inc., Boca Raton, FL.

Huberty, C.J. 1987. On statistical testing. Educational Researcher 16:4-8.

Hutnik, R.J., W.C. Bramble, and W.R. Byrnes. 1987. Seedbed contents on an electric transmission right-ofway. p. 81-88 In W.R. Byrnes and H.A. Holt (eds.) Proc. 4 th Symp. Environ. Concerns in Rights-of-way Manage., Indianapolis, IN, oct. 25-28, 1987, Purdue Univ., Dept. For, and Natur. Res., West Lafayette, IN.

Hyman, J.B., J.B. McAninch, and D.L. DeAngelis. 1991. An individual-based simulation model of herbivory in a heterogeneous landscape. p. 443-475 In M.G. Turner and R.H. Gardner (eds.) Quantitative methods in landscape ecology: The analysis and interpretation of landscape heterogeneity, Springer-Verlag, New York.

Johnston, P.S. 1975. Growth and structural development of red oak sprout clumps. For. Sci. 21:413-418.

Kays, K.R., J.B. McAnich, C.D. Canham, and J.S. Kays. 1987. Patterns of deer browsing on selected tree species within powerline rights-of-way in southeastern New York. p. 20-21 In B.H. Marose (ed.) Proc. N.E. Weed Sci. Soc. Annual Meeting, Jan. 6-8, Williamsburg, VA, University of Maryland, College Park, MD.

Kenfield, w.G. 1966. The wild gardener in the wild landscape. Hafner Publ. Co., Inc., New York.

Kenfield, W.G. 1991. The wild gardener in the wild landscape. Connecticut College Arboretum, New London, CN.

Leith, R.H. 1974. Control of brush by grassing of transmission rights-of-way. Proc. South. Weed Science Soc. Annual Meet. 27:234-235.

Little, E.L. 1979. Checklist of United States trees (native and naturalized). U.S. Dept. Agric. Forest Service, Agric. Handbook No. 541, Washington, D.C.

Luken, J.O., A.C. Hinton, and D.G. Baker. 1991. Assessment of frequent cutting as a plant-community management technique in power-line corridors. Environ. Manage. 15:381-388.

Luken, J.O., A.C. Hinton, and D.G. Baker. 1992a. Response of woody plant communities in power-line corridors to frequent anthropogenic disturbance. Ecol. Appl. 356-362.

Luken, J.O., S.W. Beiting, S.K. Kareth, R.L. Kumler, J.H. Liu, and C.A. Seither. 1992b. Bark girdling by herbivores as a potential biological control of black locust (Robinia pseudoacacia) in power-line corridors. Trans. Ky. Acad. Sci. 53:26-28.

MacMahon, J.A. 1980. Ecosystems over time: Succession and other types of change. p. 27-58 In R. Waring (ed.) Forests: Fresh perspectives from ecosystem analysis. Oregon State Univ. Press, Corvalis, OR.

MacLellan, P., and J.M. Stewart. 1986. Latitudinal gradients in vegetation along a disturbed transmission line right-of-way in Manitoba. Can. J. Bot. 64:1311-1320.

Magurran, A.E. 1988. Ecological diversity and its measurement. Princeton Univ. Press, Princeton, NJ.

Meredith, M.P., and S.V. Stehman. 1991. Repeated measures experiments in forestry: focus on analysis of response curves. Can. J. For. Res. 21:957-965.

Milliken, G.A., and D.E. Johnson. 1984. Analysis of messy data. Vol. 1: Designed experiments. Van Nostrand Reinhold, New York, NY.

Mroz, G.D., D.J. Frederick, and M.F. Jurgensen. 1985. Site and fertilizer effects on northern hardwood stump sprouting. Can. J. For. Res. 15:535-543.

Newton, M., and F.B. Knight. 1981. Handbook of weed and insect control for forest resource managers. Timber Press, Beaverton, Oregon.

Niering, W.A. 1958. Principles of sound right-of-way vegetation management. Economic Botany 12:140-144.

Niering, W.A. 1974. Preface. In F.E. Egler and S.R. Foote (authors), 1975, Plight of the rightofway domain: victim of vandalism. Futura Media Services, Mt. Kisco, NY.

Niering, W.A. 1987. Vegetation dynamics (succession and climax) in relation to plant community management. Conservation Biology 1:287-295.

Niering, W.A. and F.E. Egler. 1955. A shrub community of Viburnum lentago, stable for twenty-five years. Ecology 36: 356-360.

Niering, W.A. and R.H. Goodwin. 1974. Creation of relatively stable shrublands with herbicides: Arresting "succession" on rights-of-way and pastureland. Ecology 55: 784-795.

Niering, W.A., G.D. Dreyer, F.E. Egler and J.P. Anderson, Jr. 1986. Stability of a Viburnum lentago shrub community after 30 years. Bulletin of the Torrey Botanical club 113: 23-27.

NMPC. 1989. Transmission right-of-way management program. Niagara Mohawk Power Corporation, Syracuse, NY.

NMPC. 1991. Proceedings herbicides and right-of-way management: Regulations, use, toxicology, risks, impacts, and alternatives. Albany, NY, Nov. 13-14 1991, Niagara Mohawk Power Corporation, Syracuse, NY.

Nowak, C.A., L.P. Abrahamson, and D.J. Raynal. 1993. Powerline corridor vegetation management trends in New York State: Has a post-herbicide era begun? J. Arbor. 19:20-26.

Nowak, C.A., L.P. Abrahamson, E.F. Neuhauser, C.W. Foreback, H.D. Freed, S.B. Shaheen, and C.H. Stevens. 1992. Cost effective vegetation management on a recently cleared electric transmission line right-of-way. Weed Tech. 6:828-837.

NYS Public Service Commission. 1980a. The role of herbicides in managing vegetation on electric transmission rights-of-way, Opinion No. 80-15, Case 27605. New York State Public Service Commission, Albany, NY.

NYS Public Service Commission. 1980b. Opinion and order adopting regulations for approval of right-of-way aerial spray plans, long-range management plans, annual maintenance programs, and discussion of herbicide applicator training program and voluntary notification system, Opinion No. 80-40, Case 27605. New York State Public Service Commission, Albany, NY.
o'Neill, R.V., D.L. DeAngelis, J.B. Waide, and T.F.H. Allen. 1986. A hierarchical concept of ecosystems. Princeton Univ. Press, Princeton, NJ.

Pickett, S.T.A., S.L. Collins, and J.J. Armesto. 1987. Models, mechanisms and pathways of succession. Bot. Review 53:335-371.

Pickett, S.T.A., and M.J. McDonnell. 1989. Changing perspectives in community dynamics: A theory of successional forces. Trends in Ecology and Evolution 4:241-245.

Pound, C.E. and F.E. Egler. 1953. Brush control in southeastern New York: fifteen years of stable tree-less communities. Ecology 34: 63-73.

Richards, N.A. 1973. Old field vegetation as an inhibitor of tree vegetation. p. 78-88 In Proc. Colloquium Biotic management along power transmission rights of way, Amer. Inst. of Biol. Sci. Ann. Meeting, Amherst, Mass., June 21, 1973, Cary Arboretum, Millbrook, New York.

Ross, M.A., and C.A. Lembi. 1985. Applied weed science. Burgess Publ. Co., Minneapolis, MN.

SAS Institute, Inc. 1985. Sas User's Guide: Statistics, Version 5 Edition. Cary, NC.

Shugart, H.H. 1984. A theory of forest dynamics: The ecological implications of forest succession models. Springer-Verlag, New York.

Stout, N.J. 1958. Atlas of forestry in New York. State Univ. Coll. of Forestry at Syracuse Univ., Bull. 41, Syracuse, NY.

Thibodeau, F.R., and N.H. Nickerson. 1986. Impact of power utility rights-of-way on wooded wetland. Environ. Manage. 10:809-814.

Tillman, R.E. 1984. Potential role of allelopathy in ROW vegetation management. p. 416-420 In A.F. Crabtree (ed.) Proc. 3rd symp. environmental concerns in rights-of-way management, San Diego, CA, Feb. 15-18, 1982, Mississippi State Univ., Mississippi State, MS.

Urban, D.L., R.V. O'Neill, and H.H. Shugart, Jr. 1987. Landscape ecology: A hierarchical perspective can help scientists understand spatial patterns. BioScience 37:119-127.

Walker, L.R., and F.S. Chapin, III. 1987. Interactions among processes controlling successional change. Oikos 50:131-137.

Warren, G.F. 1976. Classification and characteristics of herbicides. p. 1-9 In Herbicides in Forestry, Proc. 1975 John S. Wright Forestry Conf., Purdue Univ., West Lafayette, IN.

APPENDIX

Appendix lable 1. Management histories for the 21 rights-of-way used in study 1 and study 2.

Site	Plot	Yebrs s)	Management activity ${ }^{\text {a }}$
1	all	1955	cleared west line, cut stump with Esteron 245 in parts of Plots 1 and 3 (1961 clearing date assumed, see below)
	"	1961	cleared east line, cut stum with Esteron 245 in parts of Plots 1 and 3
	*	1962-76	periodic nonselective and selective chemical maintenance, no record
	*	1977-78	backpack basal with Iordon 155
	${ }^{\prime}$	1978	foliar with Krenite
	"	1978	backpack basal with Banvel 520
	"	1980	foliar with krenite
	11	1981	foliar with Krenite S
	11	1982	foliar with Krenite S
	"	1983	basal with Banvel 520/Garlon 4 mix
	1	1983	foliar with Krenite S
	1,2,3	1984	hand cut
	1,2	1984	basal with Garton
	3.4	1986	hand cut
	3.4	1987	hand cut
	3.4	1987	foliar with Krenite
	at	1988	foliar with Krenite
2	all	1970-71	cleared, cut stump with 2,4,5-1 (1971 clearing date assumed)
	"	1973-74	cut stump and basal with Tordon 155 and oil
	11	1975	" \quad
		NOTE: no information provided by utility since 1975	
3	all	1973	selectively cleared, cut stump with $\$$ ilvex or $2,4-\mathrm{D}$, midsummer basal with Silvex or 2,4-D
	H	1975	cut stump with 2,4,5-1
		NOTE: no information provided by utility since 1975	
4	all	1920s	cleared (1925 clearing date assuned, see below)
	11	1950	broadcast with herbicides (assumed, see betow)
	${ }^{\prime \prime}$	1958-62	basal
		NOTE: broadcast spraying of herbicides during early history, first used in New York in early 1950s	
		NOTE: no information provided by utility since 1975	
5	all	1916	clegred
	"	1917-48	periodically hand cut
	4	1949	recleared
	11	1955	1/3 right-of-way brush hogged, basal treat
	"	1958	recteared
	"	1967	recleared, cut stump with 2,4,5-T
	!	1970	besal spray
	"	1974	cut stump
	H	1988	hand cut (field observation)
		HOTE: no information provided by utility since 1975	

Appendix table 1 continued.

Appendix Table 1 contirued.

Appendix Table 1 continued.

Site	Plot	Year	Activity
16	all	1962	selective foliar with 2,4,5-1
	1,2,3,6	1964	" $"$
	4.5	1965	selective foliar with Tordon 101
	-1!	1971	basal with lordon 155
	4	1972	basal with rordon 155
	${ }^{\prime \prime}$	1985	hand cut (in-field tree age measurement)
		WOTE: no history since 1972, records held by the National Lead line	
17	all	1958	cleared
	1,2	1958	basal with 2,4,5-T
	11	1964	basal
	*	1969	stem-foliar with tordon 101
	"	1983	hand cut
	1,2	1985	cut stump with Weedone cB/Garton 4 mix
	3	1985	stem-foliar with Gartan 4
	3	1989	basal Access/Garlon 4 mix
	1,2	1991	cut stump with Compadre
	3.4	1991	selective foliar with Accord/Escort mix
		NOTE: initial clearing date may be prior to 1958	
18	all	1957	cleared, cut stump with 2,4,5-T
	"	1960	stem-foliar with 2,4,5-T
	${ }^{*}$	1963	11
	\cdots	1966	stem-foliar with Tordon 101
	"	1970	" ${ }^{\prime \prime}$
	1	1985	hand cut
	2,3	1985	foliar
	2	1988	basal with Garlon 4
	"	1992	spring hydro-ax
		NDTE: need herbicide formulations for 1985	
19	all	1942	cleared
	\cdots	1943-50	periodically hand cut
	"	1951-52	basal with 2,4-D and 2,4,5-1
	"	1953-61	no maintenance record
	"	1962	aerial foliar with 2,4,5-1
	11	1965	broadcast ground foliar with Tordon 101
	11	1969	basal with Tordon 155
	4	1971	broadcast ground foliar with Tordon 101
	"	1984	selective foliar with Krenite
	1	1991	selective foliar with Krenite S
20	-ll	1957	cleared
	"	1960	broadcast foliar with Esteron
	"	1970	helicopter with Tordon 101
	"	1979	cut stump
	1	1987	cut stump
	2	1987	selective foliar
		NOTE: need herbicide formulations from 1975 to 1992	

Appendix Table 1 continued.


```
a Herbicide trade name -- common name:
2,4-0 - 2,4-0
2,4,5-T =. 2,4,5-T
Access -- picloram and 2,4-D
Accord =- glyphosate
Ammate -- ammonitum sulfamate
Barivel 520 -. dicamba and 2,4-D
Compadre -- gtyphosate
Dacemine 20/2T - - 2,4-D and 2,4,5-T
Escort - - metsulfuron methy!
Esteron 245 -- 2,4,5-T
Esteron =- 2,4*0
Garlon 3A, Garlon 4, and Garlon -- triclopyr
Krenite and Krenite $ .. fosamine ammonium
Kuron -. 2,4,5-TP
Silver .. 2,4,5*TP
Tordon 101 -- 2,4-D and picloram
Tordon 155 -- 2,4,5-T and picloram
Tordon 10K pellets . picloram
Tordon RTU -- 2,4-D and picloram
Weedone CB -- 2,4-D and dichlorprop
```

NOTE: Management histories through 1975 were summarized from ESEERCO's 1977 final report "Environmental and Economic Aspects of Contemporaneous Electric Transmission Line Right-of-way Management Techniques, Vol. 2 and $3^{\prime \prime}$. Management histories since 1975 were summarized from information provided as personal communicetions by each utility:
C. Allen, Miagara Mohawk Power Corporation
H. Dale Freed, Niagara Mohawk Power Corporation
A. Higgins, Central Hudson Gas and Electric
D. Mider, New York State Electric and Gas Corporation
B. Slade, New York Power Authority
J. Curly, Consolidated Edison Co., of WY, Inc.
M. Gentile, Consolidated Edison Co., of NY, Inc.
J. Hollahan, Orange and Rockland Utilities, inc.
J. Pasquini, Aochester Gas and Electric Corporation
P. Woodward, New York State Electric and Gas Corporation

Appendix Table 2. Common and scientific names of trea spacies found on the electric transmission line right-of-way plots in 1975, 1991, and 1992, a
Common name Scientific name
balsamfir
boxelder
red maple
silver maple
sugar maple
ailanthus
serviceberryb
yellow birch
sweet birch
paper birch
gray birchb
American hornbeamb
bitternut hickory
pignut hickory
shagbark hickory
American beech
white ash
black ash
green ash
butternut
black walnut
eastern redcedar
yellow-poplar
eastern hophornbeamb
white spruce
black spruce
red spruce
red pine
eastern white pine
Scotch pine
eastern cottonwood
large-toothed aspen
quaking aspen
pin cherryb
black cherry
white oak
swamp white oak
scarlet oak
chinkapin oak
chestnut oak
northern red oak
black oak
black locust
gassafras
northern white-cedar
American basswood

Abies balsamea (L.) Mill.
Acer nequndo L.
Acer rubrum L.
Acer saccharinum L.
Acer saccharum Nareh.
Ailanthus altigsima (Mill.) Swingle
Amelanchier arbored (Michx f.) Fern.
Betula alleghaniengla Britton
Betula lenta L.
Betula papyrifera Marah.
Betula populifolia Marsh.
Carpinus caroliniana Walt.
Carya cordiformis (Wangenh.) K. Koch
Carya glabra (Mill.) Sweet
Carya ovata (Mill.) K. Koch
Fagus grandifolia Ehrh.
Fraxinug americana L.
Fraxinue nigra Marsh.
Fraxinug pennsylvanica Marsh.
Juglans cinerea L.
Juglan
Juniperus virginiana L.
Liriodendron tulipifera L .
Ostrya virginiana (Mill.) K. Koch
Picea glauca (Moench) Voss
Picea mariana (Mill.) B.S.P.
Picea rubens Sarg.
Pinug resinosa Ait.
Pinus strobus L.
Pinug gylvegtrig L.
Populus deltoides Bartr. ex Marsh.
Populug grandidentata Michx.
Populus tremuloides Michx.
Prunus penaylvanica L. f.
Prunus serotina Ehrh.
Quercus alba L.
Quercus bicolor Willd.
Quercus coccinea Muenchh.
Quercug muehlenbergii Engelm.
Quercus prinub L.
Quercus rubra L.
Quercua velutina Lam.
Robinia pgeudoacaciag L.
Sasbafrag Albidum (Nutt.) Nees
Thuia occidentalig L.
Tilia americana L.

Appendix Table 2 continued.

Common name	Scientific name
eastern hemlock Tguga canadensis (L.) Cark. American elm $\frac{\text { Ulmus }}{}$americana L. alippery elm rubra Muhl.	

a Based on plot maps and accompanying list of trees provided with each site map in ESEERCO's 1975 study final report (ESEERCO 1977a), Niagara Mohawk Power Corporation's "List of trees to be trimmed, removed, or sprayed" (NMPC 1989), and the 1991 and 1992 field surveys. Nomenclature follows Little (1979).
b These species are conditionally listed as desirable species by the Niagara Mohawk Power Corporation in their "List of small trees and ghrubs to be preserved" (NMPC 1989).

Appendix table 3．Nunber and height of each tree，by species，tallied from the 1975 study plot maps
（ESEERCO，1977a）by site，plot and subplot．${ }^{\text {a }}$

S P SP NUM SPP HT S P SP NUM SPP HT \quad S P SP NUM SPP HT \quad S P SP NUM SPP HT

1	1	10	1	Bll	1.2	5	3	20		AME	1.5	10	2	100	1	REM	2.7	17	1	130		REM	2.4
1	1	10	1	WHA	1.0	5	3	20	2	BLC	1.0	10	2	110	2	AMH	2.1	17	1	130		reb	1.2
＇	1	10	1	日LC	1.2	5	3	20		CHO	1.0	10	2	110	1	AMH	1.8	17	1	130		REM	1.5
1	1	10	1	WHA	2.4	5	3	20	1	yeb	1.5	10	2	110		REM	1.2	47	1	130	＋	REm	1.0
1	1	10	1	bll	1.0	5	3	20		SAS	1.5	10	2	120	0	No	0.0	17	1	140		GRE	1.0
1	1	20	1	BLL	2.4	5	3	20	2	GRB	1.2	10	2	130	1	amh	1.2	17	1	140	1	Rem	1.8
1	1	20	1	BLL	1.8	5	3	20		WHA	2.1	10	2	140	1	REM	1.8	17	1	140		REM	1.5
1	1	20	2	BLL	2.1	5	3	20	1	reb	1.8	10	2	150	2	AMH	1.0	17	1	150	1	REM	1.8
1	1	20	1	WHA	1.0	5	3	20	1	LaA	1.8	10	2	160	0	No	0.0	17	1	150	1	GRE	1.0
1	1	20	1	BLL	1.0	5	3	30	1	SWB	1.5	11	1	10	1	hHa	5.2	17	1	150		REM	2.1
1	1	20	1	BLL	1.2	5	3	30	1	RED	1.8	11	1	10	1	UHA	3.0	17	1	150	1	REM	1.5
1	1	20	1	YEP	3.7	5	3	30	1	GRB	1.5	11	1	10	3	bll	1.2	17	1	150		GRB	1.2
1	1	20	1	SAS	1.8	5	3	30	3	WHA	1.5	11	1	10	1	BLL	1.5	17	1	150	1	REM	1.2
1	1	30	1	BLL	1.8	5	3	30	1	REM	1.0	11	1	20	2	Hha	1.8	17	1	160	2	REM	1.8
1	1	30	1	BLL	1.2	5	3	30	1	BIH	1.8	11	1	20	1	WHA	2.4	17	1	160	1	REM	1.0
1	1	30	1	WHa	1.0	5	3	30	1	REO	1.2	11	1	20	1	WHA	1.2	17	1	160	1	OUA	1.5
1	1	30	2	BLL	1.0	5	3	30	3	REO	1.5	11	1	20	1	AME	1.5	17	1	165	2	QUA	2.1
1	1	30	1	bLC	1.8	5	3	30	1	YES	1.5	11	，	20	1	WHA	3.0	17	1	165	1	Qua	1.5
1	1	30	3	BLL	2.1	5	3	40	1	AMH	1.5	11	1	30	1	WHA	2.7	17	1	165	1	bas	1.2
1	1	40	2	bll	1.8	5	3	40	1	BLC	1.0	11	1	30	1	ble	3.7	17	1	165	1	REN	1.5
1	1	40	1	uha	1.2	5	3	40	1	REO	9.2	11	1	30	1	WHa	1.8	17	1	165	1	REM	1.2
1	1	40	1	REO	1.0	5	3	40	1	BlH	1.0	11	1	30	1	BLC	2.1	17	1	165	1	REM	2.1
9	1	40	4	WHA	1.5		3	40	1	WHA	1.5	11	1	30	1	WHA	2.1	17	2	10	2	OUA	1.0
1	1	40	2	BLL	1.2	5	3	40	1	REO	1.5	11	1	30	1	HHA	5.8	17	2	10	1	Qua	1.2
1	1	40	3	SWB	1.2	5	3	50	1	BiH	1.0	11	1	30		BLL	1.0	17	2	10	，	OUA	1.8
1	1	40	1	GRB	1.0	5	3	50	1	81\％	1.5	11	1	40	2	日LL	1.5	17	2	10	1	REM	1.5
1	1	40	1	BLL	2.1	5	3	50	1	Сно	1.5	11	1	40	1	REO	1.5	17	2	10	1	hha	1.8
1	1	40	10	BLL	1.0	5	3	50	1	LAA	1.2	11	1	40	2	AME	1.8	17	2	10	1	UHA	1.2
1	1	40	1	WHA	1.0	5	3	60	2	REO	1.0	11	1	40	2	BLL	3.7	17	2	20	1	Wha	1.5
1	1	40	3	BLL	1.5	5	3	60	1	REO	1.5	11	1	40	1	AME	2.7	17	2	20	1	OUA	1.0
1	1	50	1	8LO	1.0	5	3	60	1	blc	1.8	11	1	40	1	WHA	2.7	17	2	20	1	OUA	2.1
1	1	50	1	BLL	2.1	5	3	70	1	SAS	1.5	11	1	40	1	BLC	3.4	17	2	20	1	GR8	1.0
1	1	50	38	8LL	1.2	5	3	70	5	REO	1.0	11	1	40	1	WHA	3.0	17	2	20		Wha	1.0
1	1	50	1	GRB	1.5	5	3	70	1	ble	1.2	19	1	40	1	AME	1.5	17	2	20	1	REM	1.8
1	1	50	1	WHA	1.5	5	3	70	2	las	1.2	11	1	40	3	BLL	1.0	17	2	30	1	ChB	1.0
1	1	50	6	BLL	1.5	5	3	70	1	CHO	1.0	11	1	40	1	AME	2.1	17	2	40	1	CRB	1.2
1	1	50	1	HHA	1.0	5	3	70	1	SAS	1.0	11	1	40	1	blc	5.2	17	2	50	1	PIC	1.8
1	1	50	1 B	BLL	1.0	5	3	70	1	CHO	1.2	11	1	40	1	BLL	1.8	17	2	50	1	UHA	2.1
1	1	60	1	WHA	1.8	5	3	70	2	heo	1.2	11	1	40	2	ame	1.0	17	2	60	1	REM	1.8
1	1	60	1 B	BLL	1.5	5	3	75	1	SAS	1.5	11	，	40	2	Wha	1.5	17	2	60	1	REM	2.1
1	1	60		BLL	1.5	5	3	75	2	RED	1.2	11	1	40	1	ble	2.7	17	2	60	1	REM	1.8
1	1	70	0	но	0.0	5	3	75	2	REO	1.0	11	1	50	4	WHA	1.8	17	2	60	1	PIC	1.0
1	1	80	1	GRE	1.0	5	4	10	1	REM	1.8	11	1	50	1	WHA	2.4	17	2	60	1	hha	1.0
，	1	80	1	SLB	1.5	5	4	10	1	AME	1.5	11	1	50	1	BLL	2.1	17	2	70	1	REM	1.0
1	1	90	0	no	0.0	5	4	10	1	AME	1.8	11	1	50	1	BLL	3.4	17	2	70	1	REM	1.8
1	1	100		BLL	1.5	5	4	20	0	no	0.0	11	1	50	1	WHA	2.1	17	2	70	1	UHA	2.1
1	1	100	1	aua	1.2	5	4	30	1	SAS	2.1	11	1	50	1	BLL	1.0	17	2	70	1	CRB	1.8
1	1	100	1 日	BLL	1.8	5	4	40	2	REM	1.8	11	1	50	1	ame	2.4	17	2	80	1	REM	1.8
1	1	100	1 日	日LL	2.1	5	4	50	1	HHA	1.5	11	1	50	1	BLC	3.0	17	2	80	1	GRB	1.2
1	1	100	2	BLL	1.2	5	4	50	1	REM	1.8	11	1	50	2	BLL	1.8	17	2	80		Wha	1.8
1	1	100	1 B	BLL	1.0	5	4	60	0	no	0.0	11	1	50	1	BLL	2.7	17	2	80		WHa	6.1
	1	110		BLL	1.5	5	4	70	1	REM	1.5	11	1	60	＋	BLL	5.5	17	2	90	1	GRB	1.0

Appendix Table 3 cont inued.

1	1	110	1	BLL	1.0	5	4	70	1	REM	1.8	11	1	60	2	AME	1.2	17	2	90	1	YEB	1.2
1	1	110	9	BLL	2.7	5	4	80	1	REM	1.8	11	1	60	1	BLL	4.3	17	2	100	1	REM	1.8
1	1	120	1	BLC	2.4	5	4	80	1	REM	2.1	11	1	60		8LC	2.1	17	2	100	1	OUA	1.2
1	1	120	3	BLL	1.5	5	4	80	1	REM	1.5	11	1	60	1	AME	1.8	17	2	100	1	GRE	1.0
1	1	120	1	BLL	1.2	5	4	80	1	AME	2.1	11	1	60	1	BLL	3.4	17	2	710	1	GRB	1.0
1	1	130	2	BLL	1.5	5	4	80	1	REM	3.0	11	1	60	2	BLL	7.3	17	2	110	1	YEB	1.2
1	1	130	1	GRB	1.8	5	5	10	1	REM	1.5	11	1	60	1	WHA	2.1	17	2	110	1	GR8	1.8
1	\%	130	1	BLC	1.5	5	5	10	1	WHO	1.5	11	1	60	1	BLt	5.2	17	2	110	1	UHA	1.5
1	1	130	1	GRB	1.5	5	5	20	3	B1H	1.8	11	1	60	4	BLL	5.2	17	2	110	1	CRB	1.2
1	1	130	1	WHA	1.2	5	5	20	1	GRE	1.0	11	1	60	1	PIC	1.5	17	2	120	1	OUA	6.4
1	1	130	1	BLC	2.4	5	5	20	2	REO	1.8	11	1	60	1	BLL	1.5	17	2	120	1	OUA	1.0
1	1	130	9	SWB	2.4	5	5	20	1	WHA	1.5	11	1	60	1	BLL	3.7	17	2	120	1	SWB	1.2
1	1	140	1	LAA	1.5	5	5	20	1	YEB	1.8	11	1	60	1	BLL	7.9	17	2	120	1	GRE	1.5
1	1	140	1	GRB	1.8	5	5	30	2	LAA	1.2	11	1	60	2	AME	1.5	17	2	120	1	REM	2.7
1	1	140	1	BLC	2.4	5	5	30	1	SAS	1.5	11	1	60	1	BLC	2.7	17	2	120	1	GRB	1.0
1	1	140	2	BLC	$t .2$	5	5	30	2	SAS	1.0	11	1	60	2	BLL	6.1	17	2	130	2	GRB	1.0
1	1	140	1	BLL	1.0	5	5	30	1	SAS	2.1	11	1	70	2	WHA	1.5	17	2	130	1	BAS	2.1
1	1	140	1	LAA	2.1	5	5	30	1	YEB	1.8	11	1	70	1	BLL	4.3	17	2	130	2	GRB	1.5
1	1	140	1	REO	1.8	5	5	30	1	SAS	1.8	11	1	70	1	WHA	3.4	17	2	130	1	GRB	1.2
1	1	140	2	BLL	1.2	5	5	30	1	REO	1.0	11	1	70	1	BLL	5.2	17	2	130	1	CRE	1.8
1	1	140	2	WHA	1.2	5	5	30	1	YEB	1.5	11	1	70	4	BLL	5.2	17	2	140	1	GRB	1.2
1	1	140	2	WHA	4.0	5	5	40	1	YEB	1.8	11	1	70	1	WHA	1.0	17	2	140	1	REM	2.1
1	1	140	1	GRB	1.2	5	5	40	6	YEB	1.5	11	1	70	5	WHA	2.1	17	2	140	1	REM	3.7
1	1	140	1	GRB	1.5	5	5	40	3	LAA	1.5	11	1	70	1	WHA	3.0	17	2	140	1	GRB	9.0
1	1	150	1	BLC	2.1	5	5	40	1	WHO	1.5	11	1	70	1	BLL	1.8	17	2	140	1	WHA	2.1
1	1	150	1	LAA	1.5	5	5	40	1	GRB	1.2	11	1	70	1	REM	1.8	17	2	140	1	OUA	1.5
1	1	150	1	LAA	1.2	5	5	40	2	81H	1.8	11	1	70	2	BLC	3.4	17	2	140	1	OUA	1.8
1	1	150	1	las	1.0	5	5	40	1	GRE	1.5	11	1	70	1	REO	1.8	17	2	150	1	GRE	1.0
1	1	150	1	8LL	2.1	5	5	40	1	LAA	1.2	11	1	70	1	WHA	2.7	17	2	150	1	OUA	2.1
1	1	150	3	BLL	1.8	5	5	40	1	SAS	1.5	11	1	70	2	BLL	3.4	17	2	150	1	REM	1.8
1	1	150	1	BLC	1.5	5	5	40	1	REM	1.8	11	1	70	2	BLC	1.8	17	2	150	1	REM	2.7
1	1	150	1	BLL	1.2	5	5	40	1	BIH	1.5	11	1	70	1	REO	2.4	17	2	150	1	REM	2.4
1	1	155	1	WHA	1.2	5	5	50	1	YEB	1.0	11	1	70	1	BLL	2.1	17	2	150	1	REM	3.0
1	1	155	1	GRB	1.5	5	5	50	3	SAS	1.5	11	1	70	1	WHA	1.2	17	2	150	2	OUA	1.0
1	1	155	1	SUM	1.5	5	5	50	5	SAS	2.1	11	1	70	1	BLC	2.7	17	2	160	2	OUA	1.8
1	1	155	1	GRB	1.8	5	5	50	1	GRE	1.2	11	1	70	3	BLC	1.5	17	2	160	2	Qua	4.6
1	1	155	2	BLL	1.5	5	5	50	2	YEB	1.5	11	1	70	2	BLL	3.7	17	2	160	1	OUA	7.0
1	3	10	1	SAS	1.8	5	5	50	1	SAS	1.2	11	1	70	1	BLC	1.2	17	2	160	2	OUA	1.2
1	3	10	2	WHA	1.5	5	5	50	1	OUA	1.5	11	1	70	4	WHA	1.8	17	2	160	1	QUA	2.1
1	3	10	1	LAA	1.2	5	5	50	2	LAA	1.0	11	1	70	2	BLC	2.1	17	2	160	1	REM	1.8
1	3	10	1	LAA	1.5	5	5	50	5	SAS	1.8	11	1	80	1	BLL	8.2	17	2	160	1	OUA	1.5
1	3	10	3	REO	1.8	5	5	50	1	YEB	1.8	11	1	80	4	BLC	2.1	17	2	160	1	oua	6.7
1	3	10	1	LAA	3.0	5	5	50	1	QUA	1.2	11	1	80	1	AME	3.0	17	2	160	1	oua	5.5
1	3	10	2	SAS	3.4	5	5	50	1	GRB	1.5	11	1	80	1	WHA	4.6	17	2	160	1	out	6.1
1	3	10	3	UHA	2.1	5	5	50	1	GRB	1.0	11	1	80	2	BLC	2.4	17	2	160	1	Qua	2.4
1	3	10	1	WHA	1.0	5	5	60	1	BLC	1.0	11	1	80	2	BLC	1.5	17	2	165	2	OUA	5.2
1	3	10	1	SAS	3.0	5	5	60	3	SAS	1.0	11	1	80	1	HHA	3.4	17	2	165	1	WHA	1.2
1	3	10	2	SAS	3.7	5	5	60	1	GRB	1.0	11	1	80	1	BLt	5.5	17	2	165	1	Gr8	1.0
1	3	20	1	GRE	2.1	5	5	60	1	SAS	1.8	11	1	80	1	WHA	2.4	17	2	165	1	OUA	1.2
1	3	20	1	SWB	1.2	5	5	60	1	CHO	1.5	11	1	80	5	WHA	2.1	17	2	165	2	OUA	1.8
1	3	20	1	Qua	1.2	5	5	60	1	YEB	1.2	11	1	80	1	AME	2.4	17	2	165	1	WHA	2.4
1	3	20	1	GRB	1.2	5	5	60	5	SAS	1.2	11	1	80	1	BLC	1.8	17	2	165	1	REM	1.8
1	3	20	1	LAA	1.0	5	5	70	1	WHA	1.5	11	1	80	1	日LC	3.4	17	2	165	1	REM	2.4
1	3	20	2	SWE	1.5	5	5	70	4	SAS	1.2	11	1	80	4	BLC	2.7	17	2	165	1	OUA	1.5

Appendix Table 3 continued.

1	3	20	1	LAA	1.2	5	5	70	2	BIH	1.5	11	1	80	1	8LL	3.7	17	2	165	1	REM	4.0
1	3	20	1	OUA	1.5	5	5	70	1	LAA	1.5	11	1	80	4	WHA	1.5	17	2	165	1	OUA	5.8
1	3	20	1	OUA	1.0	5	5	70	2	REO	1.5	11	1	80	2	BLL	5.2	17	3	10	1	OUA	1.0
1	3	20	2	REO	2.1	5	5	70	1	YEB	1.0	11	1	80	1	WHA	5.2	17	3	10	1	OUA	1.2
1	3	20	1	GRE	1.0	5	5	70	1	CHD	1.2	11	1	80	1	REM	2.1	17	3	10	1	REA	1.8
1	3	20	1	SAS	1.5	5	5	70	1	WHA	1.0	11	1	80	1	BLC	6.1	17	3	10	2	REX	1.5
1	3	20	1	laa	1.5	6	1	10	0	NO	0.0	11	1	80	2	BLL	5.2	17	3	10	\dagger	REM	1.5
1	3	20	1	SAS	1.8	6	1	20	0	no	0.0	11	1	80	3	WHA	1.8	17	3	10	1	HHA	1.0
1	3	20	1	YEP	3.7	6	1	30	1	WhP	1.8	11	1	80	1	B4L	2.1	17	3	10	2	REM	1.0
1	3	30	1	Qua	1.2	6	1	40	0	no	0.0	11	1	90	2	BLC	1.5	17	3	10	2	OUA	1.8
1	3	30	1	LAA	1.0	6	1	50	0	NO	0.0	11	1	90	1	WHA	4.0	17	3	10	2	REM	1.2
1	3	30	1	GRB	1.0	6	1	60	1	WHP	1.2	11	1	90	1	HHA	1.0	17	3	20	1	REM	1.2
1	3	30	1	LAA	4.2	6	1	70	0	NO	0.0	11	1	90	2	BLC	2.1	17	3	20	1	REM	1.8
1	3	30	1	LAA	1.5	6	1	80	0	NO	0.0	11	1	90	1	BLL	3.7	17	3	20	1	REM	2.1
1	3	40	1	LAA	1.5	6	1	90	0	NO	0.0	11	1	90	3	HHA	1.8	17	3	20	3	REM	1.5
1	3	40	1	Qua	1.5	6	1	100	0	NO	0.0	11	1	90	2	BLL	1.8	17	3	20	1	REM	1.8
1	3	50	3	LAA	1.5	6	1	110	0	no	0.0	11	1	90	1	WHA	5.2	17	3	20	1	REM	2.1
1	3	50	1	LAA	1.8	6	1	120	0	NO	0.0	11	1	90	2	BLL	2.1	17	3	30	2	REM	1.0
1	3	50	4	LAA	$\uparrow .0$	6	1	130	0	NO	0.0	11	1	90	2	BLC	1.8	17	3	30	1	WHA	2.1
1	3	50	1	GRB	1.5	6	1	140	0	NO	0.0	11	1	90	2	BLL	5.2	17	3	30	1	REM	1.8
1	3	50	5	LAA	1.2	6	1	150	2	WHA	1.5	11	1	90	2	WHA	1.5	17	3	30	2	REN	1.2
1	3	50	1	LAA	2.9	6	1	160	0	NO	0.0	11	1	90	2	BLC	1.8	17	3	30	1	GRB	1.5
1	3	50	1	SWB	1.2	6	1	170	1	AME	1.8	11	1	90	3	WHA	2.4	17	3	30	1	REM	1.5
1	3	60	2	LAA	1.5	6	1	180	0	no	0.0	11	1	90	6	WHA	2.1	17	3	40	1	REM	1.8
1	3	60	1	LAA	1.8	6	2	10	1	AMH	1.2	11	1	90	2	WHA	3.7	17	3	40	1	PIC	1.8
1	3	60	1	OUA	1.2	6	2	10	1	GRB	1.0	11	2	10	1	NHC	5.2	17	3	50	0	NO	0.0
1	3	60	1	GRB	1.0	6	2	10	2	Qua	1.0	11	2	10	1	NHC	1.8	17	3	60	0	HO	0.0
1	3	60	1	LAA	1.2	6	2	10	1	Qua	1,2	11	2	10	1	NWC	1.0	17	3	70	1	dua	2.1
1	3	60	1	OUA	1.8	6	2	20	1	OUA	1.5	11	2	10	1	NWC	1.5	17	3	70	3	oua	1.5
1	3	60	1	OUA	1.0	6	2	20	1	AME	1.0	11	2	10	1	NWC	2.4	17	3	70	2	CuA	1.8
1	3	70	1	WHO	1.2	6	2	20	1	QUA	1.2	11	2	10	1	NWL	2.1	17	3	80	1	dua	3.0
1	3	70	2	UHA	1.5	6	2	20	2	OUA	1.0	11	2	10	5	NWC	1.2	17	3	80	2	OUA	2.1
1	3	70	1	LAA	1.8	6	2	30	1	WHP	1.8	11	2	20	1	WHA	1.2	17	3	80	3	Qua	1.5
1	3	70	1	las	1.2	6	2	30	1	WHP	2.4	11	2	20	2	NWC	1.0	17	3	80	2	Qua	1.8
1	3	70	1	LAA	1.5	6	2	30	3	OUA	1.5	11	2	20	1	NWC	1.5	17	3	80	1	OUA	1.0
1	3	70	1	SAS	1.0	6	2	30	1	REO	6.1	11	2	30	1	NuC	1.5	17	3	80	1	PIC	2.4
1	3	80	1	LAA	1.0	6	2	30	1	QUA	1.8	11	2	30	1	WHA	2.7	17	3	80	3	OUA	1.2
1	3	80	2	LAA	1.8	6	2	30	2	WHP	1.2	11	2	60	1	WHA	1.2	17	3	90	1	REM	1.5
1	3	80	1	BLC	1.8	6	2	30	1	Qua	1.5	11	2	50	1	WHA	1.2	17	3	90	4	PIC	3.0
1	3	80	1	WHA	1.8	6	2	40	0	NO	0.0	11	2	50	1	NWC	3.4	17	3	90	1	REM	1.2
1	3	80	2	SAS	1.0	6	2	50	1	Qua	1.0	11	2	50	1	NWC	1.5	17	3	90	1	PIC	1.8
1	3	80	1	REO	1.0	6	2	50	2	WHP	1.5	11	2	60	4	BLL	1.5	17	3	90	1	PIC	2.1
1	3	80	1	SAS	1.5	6	2	50	1	WHP	1.0	11	2	60	1	WHA	1.8	17	3	90	1	REM	1.5
1	3	80	1	SAS	1.2	6	2	60	0	no	0.0	11	2	60	1	BLL	1.8	17	3	90	t	REM	1.8
1	3	80	1	REO	1.8	6	2	70	0	NO	0.0	11	2	70	4	BLL	1.8	17	3	90	1	OUA	2.7
1	3	90	1	LAA	1.5	6	2	80	0	NO	0.0	11	2	70	1	HWC	1.8	17	3	90	1	PIC	1.5
1	3	90	1	GRB	1.8	6	2	90	0	NO	0.0	11	2	70	1	BLL	2.1	17	3	90	1	OUA	2.4
1	3	90	1	YEP	1.5	6	2	100	0	no	0.0	14	2	70	1	REM	2.1	17	3	90	1	OUA	1.8
1	3	90	1	YEP	2.1	6	2	110	0	NO	0.0	11	2	70	1	WHA	4.6	17	3	90	1	CUA	1.0
1	3	90	4	REO	1.5	6	2	120	1	REO	1.5	11	2	70	1	NWC	2.4	17	3	90	1	WHA	2.7
1	3	90	1	LAA	1.2	6	2	130	1	OUA	1.5	11	2	70	1	WHA	2.1	17	3	100	1	CUA	1.8
1	3	90	1	SAS	1.0	6	2	130	1 1	PIC	1.0	11	2	80	1	WHO	1.8	17	3	100	2	PIC	1.0
1	3	90	1	B]H	1.8	6	2	140	1	WHA	1.8	11	2	80	1	WHA	2.1	17	3	100	1	BLC	1.2
1	3	90	1	HHA	1.8	6	2	150	0	NO	0.0	11	2	80		AME	2.4	17	3	\$00	1	SHB	1.2

Appendix Table 3 continued.

1	3	90		REO	1.0	6	2	160		no	0.0	11	2	80	1 BLL	1.5	17	3	100		REM	1.5
1	3	90		atc	1.5	6	2	170		no	0.0	11	2	80	3 BLL	1.5	17	3	100	1	REM	1.0
1	3	100	2	GRB	1.5	6	2	180	1	WHP	1.0	11	2	80	1 日LL	2.1	17	3	100	1	REM	1.8
1	3	100	1	LAA	2.1	6	2	190	0	no	0.0	11	2	80	1 wha	2.4	17	3	100	2	REM	1.2
1	3	100	1	REO	1.5	6	2	200	1	WHA	1.0	11	2	80	2 BLL	1.8	17	3	100	1	hem	3.4
1	3	100	,	REO	1.2	6	2	210	0	no	0.0	11	2	80	1 AME	2.1	17	4	10	1	amb	1.8
1	3	100	1	laa	1.0	6	2	220	1	WhP	1.2	11	2	80	1 AME	3.7	17	4	10	1	AMB	1.5
1	3	100	1	SWB	1.2	6	2	230	0	NO	0.0	11	2	80	1 SHH	2.1	17	4	10	1	REM	1.2
1	3	100	1	BIH	1.0	6	2	240	1	WHA	1.8	11	2	90	1 WHO	3.4	17	4	10		WHA	2.4
1	3	100	2	OUA	1.8	6	2	240	1	WHA	1.2	11	2	90	1 REM	3.7	17	4	10	2	WHA	1.2
1	3	110	5	QuA	1.2	6	2	250		WHA	1.2	11	2	90	2 alc	1.0	17	4	20	1	WHA	2.4
1	3	110	1	Sub	1.0	6	2	260	1	WHA	1.2	11	2	90	1 BLL	1.8	17	4	20	1	REM	1.0
1	3	110	2	aua	1.0	6	2	270	0	NO	0.0	11	2	90	1 Who	2.1	17	4	30	1	Wha	2.1
1	3	110	2	QuA	1.5	6	3	10	1	WHA	1.2	11		90	2 BLL	1.5	17	4	30	,	BLC	1.2
1	3	110	1	Reo	1.8	6	3	20	1	WHP	1.2	11	3	10	2 REM	1.5	17	4	40	2	BLC	1.2
1	3	110	1	Reo	1.2	6	3	30	2	WHP	1.2	11	3	10	1 REM	2.4	17	4	40	1	PIC	1.5
1	3	110	1	GR8	1.0	6	3	30	1	WHA	1.0	11	3	10	1 AMH	2.1	17	4	40	1	REM	9.5
1	3	120	1	RED	1.2	6	3	30		WHP	1.0	11	3	10	1 Ame	1.8	17	4	50	1	PIC	1.0
1	3	120	5	Oua	1.2	6	3	40	1	WHA	1.5	11	3	10	2 AMH	1.2	17	4	60	1	PIC	1.2
1	3	120	1	Qua	1.0	6	3	40	1	PIC	1.0	11	3	10	1 WwC	1.5	17	4	70	0	NO	0.0
1	3	120	1	SUB	1.2	6	3	40		WHA	1.8	11	3	10	1 Wha	2.1	17	4	80	0	no	0.0
1	3	120	1	Sw	1.0	6	3	50		qua	2.4	11	3	10	1 REM	2.1	17	4	90	1	REM	1.5
1	3	120	1	SWB	1.8	6	3	50	1	OUA	2.1	11	3	10	5 REM	1.8	17	4	90	1	BLC	1.2
1	3	130	2	REO	1.0	6	3	50	1	OUA	1.5	11	3	10	1 AMH	1.8	17	4	90	1	GRB	1.2
1	3	130	3	SWB	1.2	6	3	50	1	oua	1.8	11	3	20	1 ame	1.5	17	4	90	1	OuA	1.5
1	3	130	4	REO	1.8	6	3	50	1	reo	1.2	11	3	20	1 Wha	1.2	17	4	90	18	8LC	1.0
1	3	130	1	SUB	1.5	6	3	50	1	Qua	1.0	11	3	20	1 AMH	2.4	18	3	10	0	no	0.0
1	3	130	3	SWB	1.0	6	3	60	1	UHP	1.2	11	3	20	1 BLC	2.4	48	3	20	0	no	0.0
1	3	130	2	GRE	1.0	6	3	60	1	ERC	2.1	19	3	20	2 REM	1.8	18	3	30	0	no	0.0
1	3	130	2	GRB	1.2	6	3	70	2	PIC	1.0	11	3	20	1 UHA	1.8	18	3	40	0	NO	0.0
1	3	130	5	REO	1.5	6	3	80	0	NO	0.0	11	3	20	1 AME	1.8	18	3	50	1	GRE	1.2
1	3	130	1	WHO	1.5	6	3	90	0	no	0.0	11	3	20	1 AMS	1.2	18	3	60	0	no	0.0
1	3	130	1	OUA	1.0	6	3	100	0	no	0.0	11	3	20	1 AMH	1.0	18	3	70	0	no	0.0
1	3	130	3	REO	1.2	6	3	110	1	WHA	2.4	11	3	20	1 AMH	3.4	18	3	80	1	REM	1.5
1	3	130	1	qua	1.2	6	3	120	2	WHA	2.1	11	3	20	3 AMH	2.1	18	3	90	1	REM	1.8
1	3	140		Bin	1.0	6	3	120	1	UHA	2.4	11	3	20	1 REM	2.1	18	3	90	1 R	REM	1.5
1	3	140	4	REO	1.2	6	3	120	1	WHA	1.5	11	3	20	1 REM	1.2	18	3	90	2	Pab	1.0
1	3	140	2	REO	1.0	6	3	130	2	WHA	1.5	11	3	20	1 REO	3.4	18	3	90	5	PIC	1.0
1	3	140	1	BLC	1.0	6	3	140	1 P	PIH	1.5	11	3	20	1 AMH	1.8	18	3	100	2 ,	REN	1.2
1	3	140	1	REO	1.5	6	3	150	1	WHA	1.8	11	3	20	1 WHA	1.5	18	3	100	1 R	REM	1.0
1	3	140	3	GR8	1.0	6	3	160	1 R	REO	1.5	11	3	20	3 AMH	1.5	18		100	2	PIC	1.0
1	3	140	3	SUE	1.0	6	5	160		WHA	1.5	11	3	20	2 UHA	5.2	18	3	100	3 R	REM	1.5
1	3	140	1	GR8	1.2	6	3	160	1 R	reo	1.5	11	3	30	4 AMH	2.1	18	3	100	1 R	REM	2.1
1	3	140	1	las	1.2	6	3	170	0	no	0.0	11	3	30	1 AME	1.5	18	3	110	1 R	REO	3.4
1	3	140	1	SHh	1.2	6	3	180	1	WHA	2.1	11	3	30	6 AMH	1.8	18	3	110	1 R	REM	1.0
1	3	140	1	Who	1.2	6	3	180		reo	1.5	11	3	30	1 gas	1.5	18		110	1	Eah	1.5
1	3	140	1	SUM	1.0	6	3	180		WHA	1.8	11	3	30	1 HHA	1.8	18	3	110	5 R	REM	1.2
1	3	150	1	Sum	1.0	6	3	190		dua	1.0	11	3	30	1 AMH	4.0	18		110	2 R	REM	1.8
1	3	150	4	REO	1.0	6	3	190	1	WHA	2.1	11	3	30	1 BAS	2.1	18	3	110	1 R	REO	2.1
1	3	150	1	REO	1.5	6	3	200	1	oua	1.8	11	3	30	2 REM	2.1	18	3	110	1 R	REM	1.5
1	3	150	1	REO	1.8	6	3	200	1	QUA	2.4	11	3	30	2 REM	1.8	18	3	110	1 R	REM	2.1
1	3	150	1	AMB	1.2	6	3	200		OUA	1.2	11	3	30	1 WHA	1.0	19		10	1 日	BLC	5.2
1	3	150	3	SWe	1.0	6	3	200		Qua	1.0	11	3	30	2 REM	2.4	19	1	10	1	blc	5.8
1	3	150	1	LAA	1.0	6	3	210	0 N	no	0.0	11	3	30	3 AMH	1.5	19	1	10	2	BL	1.5

Appendix Table 3 cont inued.

Appendix Table 3 continued.

Appendix Table 3 continued.

2	2	50	1	Sus	1.2	8	2	20		no	0.0	13	1	30	1 REM	1.0	20	2	110	1 CRB	1.5
2	2	60	1	SWB	1.0	8	2	30		No	0.0	13	1	30	2 HHA	2.1	20	2	110	1 PIC	1.2
2	2	70	1	SWB	1.0	8		40	0	no	0.0	13	1	40	1 HHA	2.7	20	2	120	0 мо	0.0
2	2	80	2	SWB	1.0	8	2	50		no	0.0	13	1	40	2 hita	3.0	20	2	130	2 GRE	1.0
2	2	90	0	NO	0.0	8	2	60	0	no	0.0	13	1	40	1 COT	1.2	20	2	140	0 но	0.0
2	2	100	0	no	0.0	8	2	70	0	no	0.0	13	1	40	1 REM	1.5	20	2	150	1 blc	1.0
2	2	110	1	548	1.8	8	2	80	0	no	0.0	13	1	40	3 hia	1.0	20	2	160	1 GRa	1.2
2	2	110	2	SW8	1.5	8	2	90	0	no	0.0	13	1	40	2 Uha	2.1	20	2	160	1 BlC	1.0
2	2	110	3	Sus	2.1	8	2	100		NO	0.0	13	1	40	2 aha	1.5	20	2	160	2 GRE	1.0
2	2	120	1	REM	3.7	8	2	110		No	0.0	13	1	40	1 REM	2.1	20	2	170	1 GRb	1.2
2	2	120	1	REM	5.5	8	2	120	0	no	0.0	13	1	40	1 REM	1.0	20	2	170	2 GRB	1.0
2	2	120		WHO	2.4	8	2	930		REM	3.7	13	1	50	1 cor	1.0	20	2	180	0 No	0.0
2	2	120	1	SW	1.5	8	2	130	1	Sw	2.1	13	1	50	1 Wha	2.4	20	2	190	1 BLC	1.5
2	2	120	1	CHO	6.4	8	2	130	1	REO	1.0	13	1	50	1 WHA	5.2	20	2	190	2 BLC	1.0
2	2	120	1	REM	5.8	8	2	130	1	REM	1.8	13	1	50	2 WHA	1.0	20	2	200	1 BLC	1.2
2	2	130	1	REM	2.1	8	2	140	1	Sub	1.5	13	1	50	6 HHA	2.1	20	2	210	0 No	0.0
2	2	130	2	Sus	1.0	8	2	145	0	но	0.0	13	1	50	1 WHA	3.0	20	2	220	1 BlC	1.2
2	2	130	1	rem	1.8	8	3	10	3	Sw	1.8	13	1	60	1 cot	1.2	20	2	230	0 N0	0.0
2	2	140		HHO	2.4	8	3	10	1	SWe	1.5	43	1	60	1 oun	2.1	20	2	240	1 PIC	1.2
2	2	140	1	REM	4.6	8	3	10	1	SHB	2.4	13	1	60	1 HHA	2.1	20	2	250	3 PIC	1.5
2	2	150	1	Pif	1.5	8	3	10	1	\$WB	2.1	13	1	60	1 WHa	3.0	20	2	250	1 PIC	1.8
2	3	10	2	REM	1.8	8	3	10	1	SWB	1.0	13	1	60	1 REM	1.8	20	2	250	1 PIC	1.0
2	3	20	1	REM	1.8	8	3	20	2	SW8	2.1	13	1	60	1 cot	2.1	20	2	260	3 PIC	1.0
2	3	20	1	REM	2.1	8	3	20	1	Sw8	3.4	13	1	60	4 REM	1.0	20	2	260	1 PIC	2.1
2	3	20	1	REM	1.5	8	3	20	1	SWe	1.5	13	1	60	1 WHA	1.5	20	2	260	3 PIC	1.5
2	3	30	1	REO	1.5	8	3	20		Sub	1.8	13	1	60	1 cot	1.0	20	2	270	1 Pic	1.5
2	3	30	1	REM	1.8	8	3	30	0	no	0.0	13	1	70	2 AME	1.8	20	2	270	1 PIC	2.1
2	3	40	1	SUB	1.2	8	3	40	0	no	0.0	13	1	70	1 REM	1.2	20	2	270	2 PIC	1.0
2	3	40	1	REO	1.8	8	3	50		HO	0.0	13	1	70	1 cor	1.2	20	2	270	2 PIC	1.2
2	3	40	1	REM	2.4	8	3	60	0	no	0.0	13	1	70	1 hha	2.1	21	1	10	1 cua	1.5
2	3	40	1	REM	1.5	8	3	70	0	no	0.0	13	1	70	1 cot	1.0	21	1	10	1 dua	1.2
2	3	50	1	REM	2.4	8	3	B0	0	no	0.0	13	1	70	1 WHA	1.5	21	1	20	1 OUA	1.2
2	3	50	1	REO	2.4	8	3	90	0	no	0.0	13	1	70	1 Wha	1.8	21	1	30	0 no	0.0
2	3	60	1	REM	2.1	8	3	100	0	NO	0.0	13	1	70	1 COT	1.8	21	1	40	0 No	0.0
2	3	70	1	REO	2.1	8	3	110	0	no	0.0	13	1	70	1 COT	1.5	21	1	50	0 мо	0.0
2	3	80	0	no	0.0	8	3	120	2	SWB	2.1	13	1	70	1 BLL	1.2	21	1	60	1 blc	1.0
3	2	10	1	sue	1.0	8	3	120	1	SHB	1.8	13	1	70	1 COT	2.1	21	1	70	3 BLC	1.0
3	2	20	1	SW8	1.0	8	3	120	2	SwB	1.5	13	1	80	1 ame	1.2	21	1	70	1 REM	1.0
3	2	30	0	no	0.0	8	3	130	4	SWB	1.8	13	1	80	1 cor	3.0	21	1	70	1 REM	1.8
3	2	40	0	no	0.0	8	3	130	2	SWB	2.1	13	1	80	3 WHA	1.5	21	1	70	1 BLC	1.2
3	2	50	1	REM	5.8	8	3	130	1	SWB	1.0	13	1	80	2 oua	1.2	21	1	70	1 oun	1.2
3	2	60	0	no	0.0		3	140	1	Swb	1.5	13	1	80	1 WHA	1.0	21	1	80	0 mo	0.0
3	2	70	0	HO	0.0	8	3	140	1	AMB	1.0	13	1	80	1 HHA	1.8	21	1	90	1 PIC	1.2
3	2	80	1	REM	6.4	8	3	140	1	SUB	1.5	13	1	80	1 WHA	2.1	21	1	90	1 GRB	1.0
3	2	90	0	NO	0.0	8	3	140	1	SWB	2.1	13		87.5	1 cor	1.8	21	1	100	1 PIC	1.5
3	2	100	0	no	0.0	8	3	140	2	SWB	1.8	13	1	87.5	3 HHA	1.2	21	1	100	1 PIC	1.0
3	2	110	0	no	0.0	8	3	140	2	SUB	1.0	13	1	87.5	1 Qua	2.1	21	1	110	1 PIC	1.0
3	2	120	1	ame	2.1	8	4	10	1	SwB	2.1	13	1	87.5	5 WHA	1.0	21	1	120	0 No	0.0
3	3	10	1	SWB	2.4	8	4	20	1	SWe	1.8	13	1	87.5	1 UHA	2.1	21	1	130	1 GRB	1.0
	3	20	0	no	0.0	8	4	30	0	no	0.0	13	1	87.5	1 Wha	1.5	21	1	130	1 AME	2.1
3	3	30		SWB	4.6	8	4	40	0	no	0.0	14	1	10	1 Oua	1.2	21	1	140	1 BLC	1.0
	3	40	0	no	0.0	8	4	50	0	но	0.0	14	1	10	1 OUA	2.1	21	1	150	0 No	0.0
	3	50	0	no	0.0	8	4	60		NO	0.0	14	1	10	1 UHA	2.7	21	2	10	1 BLC	1.0
	3	60		no	0.0	8	4	70		no	0.0	14	1	10	1 UHA	3.7	21	2	20	1 GRB	1.

Appendix rable 3 continued.

3	3	70	0 но	0.0	8	4	80	1 GRb	3.4	14	1	10	1 BLC	1.0	21	2	20	I PIC	1.0
3	3	80	0 мо	0.0	8	4	90	0 No	0.0	14	1	10	3 O	1.5	21	2	20	1 BLC	1.0
3	3	90	0 мо	0.0	8	4	100	1 GRS	2.1	14	1	20	3 OUA	1.5	21	2	30	2 PIC	1.2
3	3	100	0 no	0.0	8	4	110	1 Reo	1.8	14	1	30	1 Ame	1.2	21	2	30	1 crb	1.0
3	3	110	1 REM	2.1	8	4	190	1 sus	1.0	14	1	30	1 OUA	1.0	21	2	30	2 PIC	1.0
3	3	110	1 Sue	1.5	8	4	120	1 Sub	1.5	14	1	30	1 OUA	1.2	21		30	2 PIC	1.5
3	3	110	1 REM	1.5	8	4	130	1 GRB	1.0	14	1	30	1 Wha	3.0	21	2	40	1 dua	1.2
3	3	120	1 сно	5.2	8	5	10	0 No	0.0	14	1	40	0 No	0.0	21	2	40	1 GRE	1.0
4	1	10	1 ShB	1.0	8	5	20	0 no	0.0	14	1	50	1 oua	1.0	21	2	40	3 PIC	1.5
4	1	10	1 REM	1.2	8	5	30	0 no	0.0	14	1	60	1 dua	1.5	21	2	40	2 BLC	1.0
4	1	10	1 REM	1.0	8	5	40	0 no	0.0	14	1	70	1 HHA	1.0	21	2	40	1 BLC	1.2
4	1	20	1 AMH	1.0	8	5	50	0 HO	0.0	14	1	70	1 BLC	1.0	21	2	40	1 PIC	1.0
4	1	20	T BLC	1.2	8	5	60	0 no	0.0	14	1	80	1 UHA	1.8	21	2	40	2 PIC	1.2
4	1	30	0 no	0.0	8	5	70	0 NO	0.0	14	1	80	1 BLC	1.2	21	2	40	1 REm	1.2
4	1	40	1 sco	1.8	8	5	80	0 no	0.0	14	1	90	1 oua	9.8	21	2	50	1 blc	1.2
4	1	40	1 REO	1.8	8	5	90	0 no	0.0	14	1	90	1 OUA	1.2	21	2	50	2 PIC	1.5
4	1	50	1 REO	1.0	8	5	100	0 NO	0.0	14	1	90	1 BLC	1.0	21	2	50	5 PIC	1.2
4	1	50	1 REm	1.0	8	5	110	0 no	0.0	14	1	100	1 Wha	1.2	21	2	50	4 PIC	1.0
4	1	50	1 REO	2.1	8	5	120	0 No	0.0	14	1	110	1 OUA	1.0	21	2	50	1 REM	1.2
4	1	50	2 REM	1.5	8	5	130	0 no	0.0	14	1	110	1 HHA	1.5	21	2	60	0 No	0.0
4	1	50	1 Wha	1.2	9	1	10	1 REM	1.0	14	1	120	2 Oua	1.0	21	2	70	1 PIC	1.2
4	1	50	1 GRE	1.5	9	1	10	1 REM	2.1	14	1	120	1 BLC	1.2	21	2	70	1 BLC	1.0
4	1	50	1 Wha	1.0	9	1	20	qua	1.0	14	1	120	1 WHA	4.0	21	2	80	1 PIC	1.5
4	1	60	1 SHS	1.0	9	1	20	RED	1.0	14	1	120	2 BLC	1.5	21	2	80	2 GRB	1.0
4	1	70	1 REM	1.2	9	1	20	BLC	1.0	14	1	120	2 dua	1.2	21	2	80	1 REM	1.2
4	1	70	1 SHB	1.2	9	1	30	2 oua	1.0	14	1	130	1 dua	1.0	21	2	80	4 BLC	1.0
4	1	70	1 REO	1.0	9	1	30	1 oua	2.7	14	1	130	1 aua	6.4	21	2	80	1 日LE	1.2
4	1	75	0 No	0.0	9	1	30	1 REM	5.2	14	1	130	3 OUA	1.2	21	2	90	1 blc	1.2
4	2	10	0 но	0.0	9	t	30	1 Qua	3.0	14	-	130	1 WHA	2.1	21	2	90	5 PIC	1.0
4	2	20	0 no	0.0	9	1	30	1 oua	3.7	14	1	130	1 WH	4.3	21	2	90	1 PIC	1.2
4	2	30	1 reb	3.0	\bigcirc	1	30	2 dua	1.5	14	1	130	1 AME	2.1	21	2	90	2 GRB	1.0
4	2	40	1 Yeb	1.5	\bigcirc	1	30	1 Sum	1.2	14	1	130	2 BLC	1.2	21	2	90	1 BLC	1.5
4	2	40	1 Yeb	2.1	9	1	30	3 qua	1.2	14	-	130	1 WHA	3.7	21	2	100	2 BLC	1.0
4	2	40	1 YEG	1.8	\bigcirc	1	40	qua	2.7	14	,	140	1 OUA	1.0	21	2	100	1 BLC	1.5
4	2	50	1 YEB	1.8	9	1	40	1 Wha	3.4	14	1	140	1 BLC	1.5	21	2	100	1 GRB	1.0
4	2	60	1 YEB	1.5	9	1	40	1 qua	1.0	14	-	140	2 OUn	1.5	21	2	100	1 PIC	1.2
4	2	60	2 Yeb	1.8	9	1	40	1 dua	1.5	14	1	140	1 oua	2.4	21	2	100	1 REM	1.2
4	2	70	1 SWB	2.1	9	1	40	1 dua	3.0	14	1	140	1 oua	1.8	21	2	100	5 BLC	1.2
4	2	70	1 SWB	3.7	9	1	50	0 no	0.0	14	1	150	1 BLC	1.5	21	2	100	3 PIC	1.0
4	2	70	1 SWB	1.5	9	1	60	1 dua	1.5	14	1	150	1 AME	1.8	21	2	100	1 BLC	1.5
4	2	75	0 no	0.0	9	1	60	1 REM	1.5	14		150	1 BLC	2.4	21	2	110	1 PIC	1.2
4	3	10	- no	0.0	9	1	70	2 OUA	1.5	14	1	150	1 WHA	6.7	21	2	110	1 REM	1.0
4	3	20	0 no	0.0	9	1	70	1 REM	2.7	14	1	150	1 OUA	1.0	21		110	3 BLC	1.0
4	3	30	0 no	0.0	9	1	70	2 OUA	1.8	14	1	150	4 gua	1.5	21	2	110	1 REM	1.8
4	3	40	0 no	0.0	9	1	70	1 REM	1.2	14	1	150	1 tot	1.2	21	,	110	18 ELC	1.5
4	3	50	0 No	0.0	9	1	80	1 dua	2.1	14	1	150	1 DUA	1.8	21	2	120	1 OUA	1.0
4	3	60	0 NO	0.0		1	80	3 DUA	2.7	14	1	150	2 Wha	1.2	21	2	120	1 BLC	1.0
4	3	70	0 no	0.0	9	1	80	5 qua	1.5	14	1	150	3 BLC	1.2	21	2	120	1 PIC	1.8
4	3	80	0 no	0.0	9	1	80	2 dua	1.0	14	1	150	1 OUA	3.4	21	2	120	1 BLC	1.8
4	3	90	0 No	0.0	9	1	80	1 dua	3.0	14	,	150	1 AME	1.5	21	2	120	1 OUA	1.8
4	3	100	0 no	0.0	9	1	80	1 BLC	3.0	14	1	150	1 HHA	1.0	21	2	120	1 dua	1.2
5	1	10	1 AME	1.2	8	1	80	2 Qua	1.2	14	1	150	3 BLC	1.0	21	2	130	1 OUA	1.2
5	,	10	1 REM	1.5	9	1	80	1 BLC	2.4	14	1	150	3 QUA	1.2	21	2	130	1 PIC	1.2
5	1	10	1 BLC	1.2	9	1	90	1 OUA	1.5	14	2	10	0 мо	0.0	21	2	130	1 OUA	1.5

Appendix Table 3 continued.

5	1	10	1 AME	1.8	9	1	90	1	OUA	5.5	14	2	20	0	MO	0.0	21	2	130	1	PIC	1.8
5	1	10	1 REM	1.8	9	1	90	4	OUA	1.0	14	2	30	1	REO	1.0	21	2	140	1	REM	1.0
5	1	10	3 REM	1.0	9	1	90	1	OUA	5.2	14	2	30	2	OUA	1.0	21	2	140	2	REM	1.5
5	1	10	1 WHA	1.5	9	1	90	1	BLC	3.0	14	2	30	2	OUA	1.0	21	2	140	1	BtC	1.2
5	1	10	1 AME	1.5	9	1	90	1	QUA	1.2	14	2	40	0	NO	0.0	21	2	150	1	REM	1.0
5	1	10	1 HHA	1.8	9	1	90	1	OUA	1.8	14	2	50	2	OUA	1.0	27	2	150	1	YE8	1.8
5	1	20	3 AME	1.5	9	1	90	1	REM	2.1	14	2	50	1	OUA	1.2	21	2	150	1	PIC	1.0
5	1	20	1 REM	1.0	9	1	90	2	QUA	2.1	14	2	60	1	OUA	1.2	21	2	150	1	REM	1.0
5	1	20	1 LAA	1.5	9	1	90	3	OUA	1.5	14	2	60	2	Qua	1.0	21	2	150	4	BLC	1.0
5	1	30	1 SAS	1.0	9	1	100	1	Qua	2.4	14	2	70	1	OUA	1.0	21	2	150	1	GRB	1.0
5	1	30	1 SAS	1.5	9	1	100	1	OUA	1.8	14	2	70	1	REO	1.0	21	2	150	2	BLC	1.5
5	1	30	1 AME	1.0	9	1	100	3	QUA	1.8	14	2	70	\dagger	OUA	1.2	21	3	10	3	PIC	1.2
5	1	30	1 REM	1.0	9	1	100	1	QUA	5.5	14	2	70	1	REO	1.5	21	3	10	1	EAH	1.8
5	1	30	1 AME	1.2	9	1	100	1	OUA	1.0	14	2	80	1	OUA	1.2	21	3	10	1	PIC	2.4
5	1	30	1 WHA	1.5	9	1	100	2	OUA	3.4	14	2	80	1	OUA	1.0	21	3	10	6	PIC	3.0
5	1	30	1 WHA	2.1	9	1	100	1	CUA	3.7	14	2	80	3	OUA	9.0	21	3	10	4	PIC	3.4
5	1	30	1 REM	1.5	9	1	100	1	QUA	2.1	14	2	80	1	REO	1.2	21	3	10	6	PIC	1.8
5	1	30	1 AME	1.5	9	1	100	1	QUA	1.2	14	2	90	1	oun	1.0	21	3	10	3	YEB	1.0
5	1	30	4 REM	1.2	9	1	100	1	qua	3.0	14	2	100	1	Qua	1.0	21	3	10	6	PIC	1.5
5	1	30	2 SAS	1.8	9	1	110	2	OUA	1.8	14	2	100	2	QuA	1.0	21	3	10	1	BLC	1.0
5	1	30	1 WHA	1.2	9	1	110	1	QUA	2.1	14	2	100	1	OUn	1.2	21	3	10	1	YEB	1.2
5	1	40	1 REM	1.0	9	1	110	2	OUA	1.0	14	2	110	1	BLC	1.0	21	3	10	3	PIC	1.0
5	1	40	1 AME	1.5	9	1	110	1	OUA	4.0	14	2	110	2	Qua	1.2	21	3	20	2	YEB	1.0
5	1	40	2 AME	1.2	9	1	110	1	BLC	1.8	14	2	110	5	gua	1.0	21	3	20	3	PIC	1.5
5	1	40	1 WHA	1.5	9	1	110	2	Qua	1.2	14	2	110	1	REO	1.0	21	3	20	2	PIC	1.8
5	1	40	1 REM	2.1	9	1	120	2	oun	1.0	14	2	110	1	OUA	1.0	21	3	20	1	PIC	1.0
5	1	40	1 REM	1.5	9	1	120	1	QUa	2.7	14	2	110	1	REM	1.0	21	3	20	3	PIC	1.2
5	1	40	1 REM	1.2	9	1	120	1	QUA	1.5	14	2	120	1	DUA	1.0	21	3	20	1	CRB	1.0
5	1	40	9 AME	1.0	9	1	120	1	OUA	1.2	14	2	120	1	QUA	1.2	21	3	20	1	PIt	3.4
5	1	40	1 SAS	1.5	9	1	120	3	OUA	2.1	14	2	120	3	QUA	1.0	21	3	20	6	YEB	1.2
5	1	50	1 OUA	2.1	9	1	120	1	dua	1.8	14	2	120	1	BLC	1.0	21	3	20	1	PIC	2.1
5	1	50	1 CHO	1.8	9	1	130	1	REM	3.4	14	2	120	2	REM	1.0	21	3	20	1	OUA	1.0
5	1	50	2 REM	1.8	9	1	130	1	REM	1.0	14	2	130	0	no	0.0	21	3	30	3	PIC	2.7
5	1	50	1 AME	1.2	9	1	130	1	SHB	1.2	14	2	140	1	qua	1.0	21	3	30	2	PIC	3.4
5	1	50	2 WHA	1.0	9	1	130	1	QUA	1.5	14	2	150	1	REM	1.0	21	3	30	4	YEB	1.2
5	1	50	2 WHA	1.2	9	1	140	1	REM	3.4	14	2	150	1	BLC	1.0	21	3	30	1	BLC	1.2
5	1	50	1 WHA	2.1	9	1	140	1	BLC	1.8	14	2	160	1	REM	1.0	21	3	30	3	PIC	1.2
5	1	50	1 AME	1.5	9	1	140	1	REM	1.0	14	2	160	1	REO	1.0	21	3	30	5	PIC	3.0
5	1	60	2 LAA	2.1	9	1	150	1	AMB	1.2	14	2	170	1	BLC	1.0	21	3	30	1	PIC	1.5
5	1	60	3 REM	1.5	9	1	150	1	BLC	1.2	14	2	170	2	REM	1.0	21	3	30	1	OUA	1.5
5	1	60	1 REO	1.0	9	1	160	1	REO	1.2	14	2	170	2	DUA	1.0	21	3	40	3	PIC	3.0
5	1	60	1 REO	1.5	9	1	170	1	REM	1.2	14	2	475	1	Qua	1.2	21	3	40	1	PIC	2.1
5	1	60	1 REO	1.8	9	1	170	1	REM	1.5	15	1	10	3	SAS	1.0	21	3	40	2	PIC	3.7
5	1	60	1 QUA	2.1	9	1	180	1	BLC	2.1	15	1	70	2	OUA	1.0	21	3	40	1	PJC	1.5
5	1	60	1 HHA	2.1	9	1	190	1	BLC	1.0	15	1	10	2	SAS	1.5	21	3	40	1	YEB	1.2
5	1	60	1 LAA	1.8	9	1	190	1	REM	1.2	15	1	10	1	SAS	1.2	21	3	50	0	no	0.0
5	1	60	1 QUA	1.5	9	1	190	2	QUA	1.2	15	1	10	1	SCP	2.1	21	3	60	0	NO	0.0
5	1	60	1 AME	1.0	9	1	190	1	Blc	1.2	15	1	10	1	REO	1.8	21	3	70	1	YEB	1.5
5	1	60	1 BLC	1.5	9	1	190	1	LAA	1.2	15	1	10	1	Qua	1.5	21	3	80	1	YEB	1.2
5	1	60	1 AME	1.2	9	1	190	1	SHE	1.8	15	1	20	1	SCP	1.0	21	3	80	2	PIC	1.5
5	1	70	2 LAA	1.5	9	1	200	1	LAA	1.0	15	1	20	1	REM	2.1	21	3	90	2	YEB	1.2
5	1	70	1 REO	1.5	9	1	200	1	CUA	1.0	15	1	20	1	REO	1.8	21	3	90	1	WHO	1.0
5	1	70	1 GRE	1.2	9	1	200	1	BLC	1.2	15	1	20	1	SCP	1.8	21	3	90	3	PIC	1.2
5	1	70	3 LAA	1.8	9	1	200	1	REM	1.8	15	1	20	1	REO	1.0	21	3	100	1	OUA	1.2

Appendix Table 3 contimued.

5	1	70	1	BLC	1.0	9	\dagger	200		UHA	1.2	15	1	30		SAS	1.0	21	3	110	2	OUA	1.5
5	,	70	1	REM	1.5	9	1	210	2	blc	1.0	15	1	30		REO	1.2	21	3	110	1 r	Yeb	1.0
5	1	70	2	LHA	1.2	9	1	220	1	REM	1.8	15	1	30		Reo	1.5	21	3	110	2	yeb	1.2
5	1	70	1	ble	1.2	9	1	220	1	AMB	1.2	15	1	30	1	SCP	1.0	21	3	110	1	OUA	1.2
5	1	80	1	oua	1.2	9	1	230	1	UHA	1.5	15	1	40	1	REO	1.8	21	3	110	2 P	PIC	1.2
5	1	80	1	SAS	3.0	9	1	230	1	REO	1.5	15	1	50	0	NO	0.0	21	3	110	1 B	BLC	1.0
5	1	80	1	ERC	3.0	9	1	240	0	no	0.0	15	1	60	1	SCP	5.2	21	3	110	2 P	PIC	1.0
5	1	80	1	dua	1.5	9	1	250	1	SWB	1.5	15	1	60	1	SCP	3.4	21	3	110	1	PIC	1.8
5	1	80	1	UHA	1.0	9	1	250	1	SHB	1.8	15	1	65	1	REO	1.5	21	3	110	1	YEb	1.5
5	1	80	3	REO	1.5	9	,	250	1	SWB	2.4	15	2	10	3	REM	1.2	21	3	110	1 Y	Yeb	1.5
5	1	80	2	HHA	1.8	9	1	250	1	SW8	1.8	15	2	10	5	REM	1.0	24	3	120	2 P	PIC	1.8
5	1	80		reo	1.2	9	1	250	1	SWB	1.2	15	2	10	1	OuA	1.0	21	3	120	2	PIC	1.5
5	1	80	1	SAS	3.7	9	2	10	0	no	0.0	15	2	10	4	REM	1.5	21	3	120	1	OUA	2.1
5	1	80	2	las	1.5	9	2	20	0	no	0.0	15	2	10	1	REM	2.4	21	3	120	1 B	BLC	1.2
5	1	80	,	HHA	1.2	9	2	30	0	no	0.0	15	2	10	1	OUA	1.5	21	3	120	1 P	PIC	1.0
5	1	80	4	REM	1.0	9	2	40	0	NO	0.0	15	2	10	3	PIC	1.0	21	3	120	1 日	日LC	1.0
5	1	80	2	REM	1.5	9	2	50	1	AMH	3.4	15	2	10	3	Qua	1.2	21	3	130	2 P	PIC	1.5
5	1	80	4	WHA	1.5	9	2	60	0	No	0.0	15	2	10	4	REM	1.8	21	3	130	2 P	PIC	1.2
5	1	80	1	REO	1.8	9	2	70	2	BLC	2.4	15	2	10	1	REO	1.2	21	3	130	1	GRB	1.0
5	1	80	1	SHh	1.2	9	2	Bu	1	BLC	2.4	15	2	10	2	REH	2.7	21	3	130	P	PIC	2.1
5	2	10	1	WHA	2.1	9	2	90	1	BLC	2.4	15	2	20	7	REM	1.0	21	3	130	1	PIC	1.0
5	2	10	1	BIn	1.8	9	2	90	1	AMH	1.5	15	2	20	3	PIC	1.0	21	3	130	2 P	PIC	1.8
5	2	10	1	WHA	1.2	\bigcirc	2	100	1	AMH	2.1	15	2	20	3	REM	1.8	21	3	130	R	REM	3.7
5	2	10	1	BLC	1.2	9	2	100	1	WHA	3.7	15	2	20	4	REM	1.5	21	3	130		YEB	1.0
5	2	10	1	WHP	1.8	9	2	100	1	PIC	1.0	15	2	20	6	REM	4.2	21	3	140	5	PIC	1.5
5	2	10	2	BIt	1.2	9	2	100	1	PIC	1.8	15	2	30	5	REM	1.5	21	3	140	O	OUA	1.2
5	2	10	1	YEB	1.8	9	2	100	2	AMH	1.8	15	2	30	1	PIC	1.5	21	3	140	3	yeb	1.0
5	2	10	1	REM	1.2	9		100	1	oua	2.1	15	2	30	5	PIC	1.0	21	3	140	G	GRB	4.5
5	2	10	1	AME	2.4	9	2	110	0	no	0.0	15	2	30	3	rem	1.0	21	3	140	P	PIC	1.8
5	2	10	1	SAS	1.2	9	2	120	0	No	0.0	15	2	30	4	REM	1.2	21	3	140	,	YEb	1.2
5	2	10	3	REO	1.5	9	2	130	0	no	0.0	15	2	40	11	REM	1.0	21	3	150	Q	qua	1.0
5	2	10	1	REM	1.8	9	2	140	2	AMH	1.5	15	2	40	1	REM	1.5	21	3	150	1	AMH	6.4
5	2	20	2	OUA	1.5	9	2	150	1	AMH	2.1	15	2	40	1	Rem	1.2	21	3	150	2	YEB	1.2
5	2	20		REO	1.5	9	2	150	1	амн	1.5	15	2	50	1	REM	2.1	21	3	150		YEA	1.8
5	2	20	1	REO	1.8	9	2	150	1	AMH	1.0	15	2	50	3	REM	1.0	21	3	150	P	PIC	1.0
5	2	20	1	SAS	1.8	9	2	180	1	AMH	1.8	15	2	60	1	REM	1.2	22	1	10	S	SHB	1.5
5	2	20	3	SAS	1.0	9	2	160	1	AMH	1.5	15	2	60	3	REM	1.0	22	1	10	2	WHa	1.8
5	2	20	1	REO	1.2	9	2	170	0	no	0.0	15	2	60	1	REM	1.5	22	1	20	Wra	WHA	1.0
5	2	20	1	BLC	1.2	9	2	180	0	no	0.0	16	1	10	1	oua	1.8	22	,	20	1	UHA	1.5
5	2	20	1	BLC	1.0		2	190	1	AMH	1.8	16	1	20		no	0.0	22	1	20	1 \%	WHA	1.2
5	2	20	1	SAS	1.5	9	2	200	1	AMH	1.5	16	1	30	0	NO	0.0	22	1	30	H	UHA	1.8
5	2	20	2	SAS	1.2	9	2	200	1	AMH	1.8	16	1	40	0	no	0.0	22	1	30	R	REM	1.0
5	2	20	1	GRB	1.8	9	2	210	1	BLC	1.8	16	1	50		no	0.0	22	,	40	0	OUA	1.0
5	2	20	1	UHA	1.2	9	2	210	1	dua	1.5	16	1	60	0	no	0.0	22	,	40	U	UIHA	1.2
5	2	20	1	REO	1.0	9	2	210	1	BLC	1.2	16	1	70	1	BLC	1.0	22	1	40	1	HHA	1.0
5	2	20	1	las	1.8	9	2	210	1	AMH	1.5	16	1	75	0	N0	0.0	22	+	50	P	Pab	1.0
5	2	20	3	REO	1.2	9	2	210	1	AMH	2.1	16	2	10	1	8LW	1.5	22	1	50	1	UHA	1.0
5	2	30	1	YEB	1.5	9	2	210	2	BLC	2.1	16	2	10	1	BLH	1.8	22	1	50	10	OUA	1.0
5	2	30	1	BLC	1.2	9	2	210	2	AMS	2.7	16	2	20	0	no	0.0	22	1	60	3	uha	1.0
5	2	30	2	REO	1.2	9	2	210	1	AMH	1.0	16	2	30		no	0.0	22	1	60	1	Wha	1.2
5	2	30	1	REO	1.2	9	2	210	2	AMH	1.8	16	2	40		no	0.0	22	1	70	1	UHA	1.0
5	2	30	1	REO	1.5	9	2	220	1	AMH	1.5	16	2	50	0	no	0.0	22	1	70	1	WHA	1.2
5	2	30	1	AME	1.8	9	2	220	1	REO	1.8	16	2	60	0	No	0.0	22	1	80	2	Wha	1.0
5	2	30	1	WHA	1.5	9	2	220	1	WHA	1.0	16	2	70	1	She	1.0	22	1	80	1 w	Wha	1.2

Appendix Table 3 continued.

s

5	2	30	1	I AME	1.5	9	2	220	2	AMH	1.2	16	2	75	2	SHB	3.0	22	1	80	1	OUA	1.0
5	2	30	1	1 WHA	2.1	9	2	220	1	AMH	1.0	16	2	75	1	HHA	1.8	22	1	90	1	WHA	1.2
5	2	30	5	SAS	1.2	9	2	220	1	AMH	1.8	16	3	10	1	oun	1.0	22	1	90	1	WHA	1.0
5	2	30	9	SAS	1.5	9	2	220	1	AMH	2.7	16	3	10	1	oun	1.2	22	1	100	1	REM	1.0
5	2	30	2	SAS	1.8	9	2	225	2	AMH	1.0	16	3	10	1	OUA	1.5	22	1	110	0	no	0.0
5	2	30	1	SAS	2.1	9	2	225	2	AMH	1.5	16	3	10	1	OUA	1.8	22	1	120	3	WHA	1.0
5	2	30	2	SAS	1.0	9	2	225	1	AMH	1.2	16	3	20	0	no	0.0	22	1	130	1	PIC	1.2
5	2	30	1	WHA	1.0	9	2	225	1	AMH	2.1	16	3	30	0	no	0.0	22	1	130	1	UKA	1.0
5	2	30	3	SAS	3.4	9	2	225	1	AMH	1.8	16	3	40	0	no	0.0	22	1	130	1	WHA	1.2
5	2	40	1	SAS	1.5	9	5	10	1	REM	1.0	16	3	50	0	NO	0.0	22	1	140	2	WHA	1.0
5	2	40	1	SAS	1.0	9	5	20	0	No	0.0	16	3	60	0	NO	0.0	22	1	150	1	WHA	1.5
5	2	40	2	SAS	1.5	9	5	30	0	NO	0.0	16	3	70	0	NO	0.0	22	1	150	4	HHA	1.0
5	2	40	1	BJH	1.5	9	5	40	0	no	0.0	16	3	75	0	NO	0.0	22	1	160	1	WHA	1.2
5	2	40	2	SAS	1.8	9	5	50	0	NO	0.0	16	5	10	1	WHP	1.8	22	1	160	1	WHA	1.5
5	2	40	1	AME	1.0	9	5	60	0	NO	0.0	16	5	10	2	QUA	1.0	22	1	160	1	REM	1.0
5	2	40	1	QUA	1.8	9	5	70	0	NO	0.0	16	5	10	1	WHP	2.1	22	1	160	1	REM	1.2
5	2	40	1	AME	1.2	9	5	80	0	NO	0.0	16	5	10	1	oua	1.2	22	1	170	1	UHA	1.0
5	2	40	2	SAS	2.1	9	5	90	1	8LC	1.2	16	5	20	1	Qua	1.2	22	1	180	1	WHA	1.2
5	2	40	1	REO	1.5	9	5	100	0	NO	0.0	16	5	20	2	oua	1.0	22	1	180	1	REM	1.2
5	2	40	1	BLC	1.5	9	5	110	0	NO	0.0	16	5	30	1	Qua	1.0	22	1	180	1	OLA	1.0
5	2	40	1	SAS	3.4	9	5	120	1	BLC	2.1	16	5	40	1	YEB	1.8	22	1	190	1	WHA	1.8
5	2	50	1	SAS	2.1	9	5	130	1	REM	3.4	16	5	40	1	OUA	1.8	22	1	190	2	REM	1.2
5	2	50	1	REO	1.5	9	5	140	1	REO	2.1	16	5	50	1	BLW	2.1	22	1	190	1	Wha	1.0
5	2	50	1	LAA	1.2	9	5	140	1	BLC	1.5	16	5	60	1	GRB	1.5	22	1	190	1	PIC	1.0
5	2	50	3	SAS	1.8	9	5	140	1	WHA	1.8	16	5	70	0	NO	0.0	22	1	190	1	REM	1.0
5	2	50	1	SAS	1.2	9	5	150	2	SHB	1.2	16	6	10	2	OUA	1.0	22	1	190	1	UHA	1.5
5	2	50	1	8IH	1.5	9	5	150	1	BLC	1.8	16	6	10	1	OUA	1.2	22	1	200	1	WHa	1.2
5	2	60	9	OUA	2.1	9	5	150	1	WHA	3.4	16	6	10	1	Qua	1.5	22	1	200	1	REM	1.0
5	2	60	1	WHA	1.8	9	5	150	1	BLC	1.2	16	6	10	2	oua	1.5	22	1	200	2	PIC	1.2
5	2	70	1	REO	1.2	9	5	150	1	BLC	1.5	16	6	20	3	OUA	1.2	22	1	200	1	REM	1.8
5	2	70	1	LAA	2.1	9	5	160	1	BLC	1.2	16	6	20	2	OUA	1.5	22	1	200	1	REM	1.5
5	2	70	2	WHA	1.2	9	5	160	1	WHA	1.8	16	6	20	1	OUA	1.8	22	1	200	1	WHA	1.0
5	2	70	1	OUA	3.4	9	5	160	1	WHA	1.2	16	6	20	1	WHP	1.5	22	1	210	1	REM	1.0
5	2	70	1	WHA	1.0	9	5	160	1	WHA	1.2	16	6	30	0	NO	0.0	22	1	210		PIC	1.5
5	2	70	1	REO	1.2	9	5	160	1	REM	1.8	16	6	40	0	No	0.0	22	1	210	2	REM	1.2
5	2	80	2	WHA	1.5	9	5	160	1	YEB	1.5	16	6	50	0	NO	0.0	22	1	210	1	WHA	1.5
5	2	80	1	CHO	1.5	9	5	160	1	AMB	1.5	16	6	60	0	no	0.0	22	1	210	1	REM	1.5
5	2	80	1	REO	1.5	9	5	160	3	WHA	1.0	16	6	70	0	HO	0.0	22	1	210	1	PIC	1.0
5	2	80	1	WHA	1.0	9	5	170	4	WHA	1.2	17	1	10	1	Qua	1.2	22	1	220	4	REM	1.5
5	2	80	1	REO	1.8	9	5	170	1	BLC	1.0	17	1	10	1	WHA	1.8	22	2	10	1	WHA	1.2
5	2	80	1	LAA	1.5	9	5	180	2	YEB	1.2	17	1	20	1	GRB	1.8	22	2	10	1	WHA	1.0
5	2	80	1	BLC	1.5	9	5	180	1	REM	1.0	17	1	20	1	WHA	5.8	22	2	10	1	REM	1.0
5	2	80	1	AME	1.5	9	5	180	1	YEB	1.0	17	1	20	1	PIC	1.0	22	2	20	3	WHA	1.2
5	2	85	1	REM	1.0	9	5	180	1	WHA	1.0	17	1	30	1	WHA	1.5	22	2	20	1	पНА	1.0
5	2	85	1	REO	1.5	9	5	180	1	WHA	1.2	17	1	40	0	NO	0.0	22	2	20	1	AME	1.0
5	2	85	1	HHA	1.5	9	5	190	1	REN	1.0	17	1	50	0	NO	0.0	22	2	30	2	REM	1.0
5	2	85	1	BLC	1.5	9	5	200	3	YEB	1.2	17	1	60	0	NO	0.0	22	2	30	2	WHA	1.5
5	2	85	1	REO	1.8	9	5	200	1	UHA	1.0	17	1	70	0	NO	0.0	22	2	30	2	UHA	1.0
5	2	85	1	AMH	1.5	9	5	200	9	WHA	1.2	17	1	80	1	GR8	1.2	22	2	40	3	LHa	1.2
5	3	10	1	Gin ${ }^{\text {c }}$	1.2	9	5	200	1	REM	1.2	17	1	80	1	GRB	1.0	22	2	50	1	LHA	1.2
5	3	10	2	UHA	1.2	9	5	200	1	REM	1.8	17	1	80	1	CRB	1.5	22	2	50	2	HHA	1.0
5	3	10	1	CRE	1.5	9	5	200	1	REM	1.0	17	1	90	1	REM	1.5	22	2	50	1	AME	1.2
5	3	10	2	REO	1.5	9	5	200	1	YEB	1.0	17	1	100	1	WHA	1.0	22	2	60	1	WHA	1.0
5	3	10	1	REO	1.2	9	5	210		YEB	1.0	17	1	100		REM	1.5	22	2	70	1		1.0

Appendix Table 3 cont inued.

5	P	SP	HL4	SPP	HT	\$	p	SP	NUM	SPP	HT	\$	P	\$P	NUM	SPP	HT	S	P	SP	NLH	SPP	HT
					- in -						+ m -						- m -						- m -
5	3	10	2	BLC	1.5	9	5	210	2	WHA	1.0	17	1	100	1	WHA	1.8	22	2	70	4	WHA	1.5
5	3	10	1	SAS	1.2	9	5	210	2	REM	1.2	17	1	100	2	GRB	1.2	22	2	70	1	REM	1.5
5	3	10	1	YEP	1.0	9	5	210	1	REM	1.0	17	1	100	1	REM	1.0	22	2	80	3	WHA	1.0
5	3	10	2	REM	1.0	9	5	210	1	WHA	1.2	17	1	110	1	UHA	2.1	22	2	80	1	WHA	1.2
5	3	10	1	SAS	1.8	9	5	220	1	REM	1.2	17	1	110	1	REM	1.5	22	2	80	1	AME	1.0
5	3	10	3	Wha	1.5	9	5	225	1	REM	1.5	17	1	110	1	REM	1.2	22	2	90	0	No	0.0
5	3	10	2	REO	1.0	10	2	10	0	NO	0.0	17	1	110	1	REM	1.0	22	2	100	2	WHA	1.0
5	3	10	1	AME	1.5	10	2	20	1	REM	1.8	87	1	120	1	REM	2.4	22	2	110	0	NO	0.0
5	3	10	1	AMH	1.2	10	2	20	1	AMH	1.0	17	1	120	1	REM	1.8	22	2	120	1	WHA	1.2
5	3	40	1	BLC	1.0	10	2	30	0	NO	0.0	17	1	120	1	REM	1.2	22	2	120	1	AME	1.0
5	3	20	4	SAS	1.2	10	2	40	0	no	0.0	17	1	120	1	REM	1.8	22	2	130	1	REM	1.0
5	3	20	1	BIt	1.0	10	2	50	0	no	0.0	17	1	120	1	REM	1.0	22	2	140	0	NO	0.0
5	3	20	1	Yeb	1.2	10	2	60	0	NO	0.0	17	1	120	1	WHA	1.8	22	2	150	0	MO	0.0
5	3	20	1	AMH	1.5	10	2	70	0	no	0.0	17	1	120	1	REM	1.5	22	2	160	1	WHA	1.0
5	3	20	2	GRE	1.5	10	2	80	0	no	0.0	17	1	130	1	REM	1.8	22	2	170	1	WHA	1.0
5	3	20	3	WHA	1.0	10	2	90	0	NO	0.0	17	1	130	1	WHA	2.4	22	2	180	1	REO	1.2
																		22	2	190	0	NO	0.0
																		22	2	200	0	no	0.0

 the tables are provided in Appendix Table 5.

Individual tree stem data has been archived on the Syracuse University mainframe computer in the WhITEDSUVM account under the file name "AlL75. PRN". This file will remain archived until $11 / 23 / 96$.

Appendix Table 4. Height of each tree, by species, measured in the field in 1991 by site, plot and subplot. ${ }^{\text {A }}$

Appendix Table 4 continued.

S	P	P SP	SPP	HT	S	P	SP	SPP	HT	S	p	SP	SPP	HT	5	P	SP	SPP	HT
				- m -					- m -					- m					- m -
1	1	1140	BLC	1.5	6	2	20	WHA	1.5	11	3	10	sum	4.9	17	4	10	UHA	1.0
1	1	1140	GRB	1.6	6	2	20	REM	2.0	11	3	10	AMH	2.1	17	4	10	OUA	1.8
1	1	140	GRE	1.4	6	2	20	WHA	1.7	11	3	10	AMH	2.9	17	4	10	UHA	1.2
1	1	1140	SWB	1.0	6	2	20	REM	1.4	11	3	10	SUM	7.0	17	4	10	WHA	1.0
1	1	140	GRB	1.0	6	2	20	WHA	1.3	11	3	10	sum	4.9	17	4	20	AMB	1.1
1	1	140	AIL	1.1	6	2	20	SHH	1.8	11	3	10	WHA	2.3	17	4	20	AMB	1.1
1	1	150	AlL	1.4	6	2	20	REM	1.8	11	3	10	SUM	5.2	17	4	30	REM	1.2
9	1	150	AIL	1.8	6	2	20	UHP	3.0	17	3	10	SUM	4.2	17	4	30	REM	1.1
1	1	1150	BLL	2.0	6	2	30	WHP	1.4	11	3	10	ANH	1.9	17	4	40	BLC	1.3
1	1	150	BLL	1.4	6	2	30	WHP	2.5	11	3	10	Sum	5.6	17	4	50	BLC	1.1
1	1	150	BLL	9.2	6	2	30	WHP	1.3	11	3	10	AMH	2.0	17	4	50	BLC	1.1
1	1	150	All	1.1	6	2	30	WHP	1.6	11	3	10	SUM	5.6	17	4	50	BLC	1.0
1	1	150	BLC	1.0	6	2	30	WHP	3.4	11	3	10	HHA	2.3	17	4	60	No	0.0
1	1	150	AIL	1.0	6	2	30	WHP	3.9	11	3	10	Sum	5.5	17	4	70	HO	0.0
1	1	150	8LL	2.0	6	2	30	REM	1.6	11	3	10	WHA	3.8	17	4	80	no	0.0
1	1	150	AIL	3.1	6	2	30	REM	1.3	11	3	10	AHH	3.0	17	4	90	no	0.0
1	1	150	BLL	1.1	6	2	30	WHP	3.0	11	3	10	SUM	6.8	18	3	10	OUA	1.2
1	1	150	AIL	1.1	6	2	30	WHP	2.5	11	3	10	AMH	2.3	18	3	10	DUA	1.2
1	1	155	All	2.2	6	2	30	WHP	$3 . \mathrm{B}$	11	3	10	WHA	1.1	18	3	10	Dua	1.4
1	1	155	AIL	1.0	6	2	30	WHP	4.5	11	3	10	AMH	2.4	18	3	10	OUA	1.2
1	1	155	AIL	1.0	6	2	30	SHH	1.0	11	3	10	SLE	2.3	18	3	20	oua	2.0
1	1	155	AIL	1.2	6	2	30	WHP	2.8	11	3	10	SUM	3.2	18	3	20	OUA	1.4
1	1	155	All	2.3	6	2	30	WHP	4.0	11	3	10	AMH	4.1	18	3	20	cua	1.3
1	1	155	All	1.3	6	2	30	WHP	3.3	11	3	10	AMH	3.1	18	3	20	cua	1.5
1	1	155	A!L	1.5	6	2	30	UHP	4.6	11	3	10	SUM	6.3	18	3	20	cua	1.5
1	1	155	AIL	1.3	6	2	40	OUA	1.0	11	3	10	AMH	3.7	18	3	20	OUA	1.0
1	1	155	AIL	2.4	6	2	40	UHA	1.8	11	3	10	SUM	3.5	18	3	20	OUA	2.2
1	1	155	AJL	1.6	6	2	40	WHA	2.3	11	3	10	WHA	3.1	18	3	30	OTA	1.0
1	1	155	AlL	1.5	6	2	40	WHP	2.2	11	3	10	SLM	3.3	18	3	40	NO	0.0
1	1	155	AIL	2.0	6	2	40	WHP	1.2	11	3	10	AMH	3.8	18	3	50	No	0.0
1	1	155	AIL	1.7	6	2	40	WHP	2.4	11	3	10	Sum	2.8	18	3	60	NO	0.0
1	1	155	AIL	1.3	6	2	40	GRB	1.2	11	3	10	Sum	6.3	18	3	70	NO	0.0
1	1	155	AlL	1.8	6	2	40	QUA	1.1	11	3	10	AMH	2.1	18	3	80	H0	0.0
1	1	155	AlL	1.4	6	2	50	WHP	4.4	11	3	10	AMH	3.0	18	3	90	REM	2.4
1	1	155	All	1.3	6	2	50	WHP	3.6	11	3	10	Su*	2.6	18	3	90	REM	1.0
1	1	155	AIL	1.3	6	2	50	WHP	3.0	11	3	20	AMH	3.9	18	3	90	PIC	5.5
1	1	755	BLL	1.1	6	2	50	WHP	1.6	11	3	20	AMH	4.7	18	3	90	REM	1.2
1	1	155	BLL	1.5	6	2	50	WHP	3.4	11	3	20	WHA	4.8	18	3	90	REM	2.8
1	1	155	AJL	1.3	6	2	50	HHA	3.6	11	3	20	AMH	2.8	18	3	90	PAB	3.0
1	1	155	Alt	1.0	6	2	50	GRB	1.4	11	3	20	REM	3.4	18	3	90	REM	1.6
1	1	155	8LL	2.6	6	2	50	WHP	2.1	11	3	20	AMH	4.8	18	3	90	REM	1.3
1	1	155	All	1.3	6	2	60	QUA	1.8	11	3	20	AMH	4.2	18	3	90	REM	3.3
1	1	155	AJL	1.4	6	2	60	WHP	2.3	11	3	20	AMH	4.7	18	3	90	REN	1.4
1	1	155	BLL	2.0	6	2	60	GRB	1.8	11	3	20	WHA	1.8	18	3	90	REM	1.1
1	1	155	BLL	1.3	6	2	60	UHP	5.3	11	3	20	REM	3.0	18	3	90	REM	2.8
1	1	155	All	1.1	6	2	60	WHP	4.4	11	3	20	AMH	2.8	18	3	90	PAB	3.0
1	3	10	WHA	4.5	6	2	60	WHP	3.0	11	3	20	SUM	4.2	18	3	90	PAB	3.0
t	3	20	UHA	2.7	6	2	60	GRB	3.1	11	3	20	REM	4.5	18	3	90	REM	2.5
1	3	20	WHA	2.4	6	2	60	PIC	1.7	11	3	20	REO	4.8	18	3	90	REM	1.2
1	3	20	SAS	5.6	6	2	60	WHP	2.1	11	3	20	WHA	1.6	18	3	90	REM	1.8
1	3	30	SAS	3.5	6	2	60	WHP	3.0	11	3	20	WHA	2.9	18	3	90	BLC	2.2
1	3	30	AIL	1.0	6	2	70	OUA	1.1	11	3	20	WHA	2.0	18	3	90	REM	1.0
1	3	30	All	3.1	6	2	70	AME	2.4	11	3	20	AMH	2.9	18	3	90	PIC	1.2
1	3	30	SAS	2.6	6	2	70	HHP	3.3	11	3	20	REO	2.9	18	3	90	REM	2.6

Appendix Table 4 continued.

\$	P	P $\mathbf{S P}$	\$PF	HT	5	P	SP	SPP	HT	S	P	SP	SPP	HI	S	P	SP	SPP	HT
				- m -				.	- m *					- m -					- m -
1	3	340	no	0.0	6	2	80	NO	0.0	11	3	20	AMH	4.8	18	3	90	PAB	1.9
1	3	350	SUB	2.7	6	2	90	no	0.0	11	3	20	AMH	4.8	18	3	90	REM	1.0
1	3	360	NO	0.0	6	2	100	WHA	1.3	11	3	20	SUM	3.1	18	3	90	PAB	3.3
1	3	370	REO	3.5	6	2	110	NO	0.0	11	3	20	WHA	2.1	18	3	90	WHA	1.2
1	3	370	BLO	2.4	6	2	120	no	0.0	11	3	20	AMH	2.1	18	3	90	REM	2.2
1	3	380	NO	0.0	6	2	130	QUA	1.8	11	3	20	REM	4.1	18	3	90	REM	1.6
1	3	390	no	0.0	6	2	140	HO	0.0	11	3	20	REM	4.2	18	3	90	REM	1.8
1	3	3100	LAA	3.5	6	2	150	WHP	1.5	11	3	20	SUM	4.0	18	3	90	WHA	1.9
1	3	3110	OUA	1.6	6	2	150	WHP	3.3	11	3	20	WHA	2.5	18	3	100	REM	3.0
1	3	3120	QUA	1.6	6	2	160	WHP	1.4	11	3	20	AMH	2.4	\% 8	3	100	REN	4.3
9	3	120	QUA	2.3	6	2	170	WHP	2.3	11	3	20	AMH	1.8	18	3	100	REM	1.1
1	3	3130	OUA	1.5	6	2	170	WHA	2.3	11	3	20	SUM	3.0	18	3	100	BLC	1.2
1	3	3130	YEP	1.8	6	2	170	WHP	2.0	11	3	20	AMH	3.2	18	3	100	REM	1.5
1	3	3130	OUA	1.4	6	2	170	WHP	2.2	11	3	20	WHA	1.8	18	3	100	REO	2.8
1	3	130	YEP	1.8	6	2	170	WHP	2.4	11	3	20	WHO	3.1	48	3	100	REN	1.9
1	3	3130	OUA	2.8	6	2	170	cua	1.5	11	3	20	SUM	2.8	18	3	100	PAB	7.0
1	3	3140	OLA	3.1	6	2	480	cua	2.6	11	3	20	SUn	2.7	18	3	100	UHP	4.5
1	3	3140	CRB	1.9	6	2	180	WHP	3.6	11	3	20	AMH	4.0	18	3	100	REM	3.3
1	3	3140	OUA	1.6	6	2	180	WHP	1.2	11	3	20	AMH	4.6	18	3	100	REM	1.8
1	3	3140	OUA	1.3	6	2	190	QUA	1.1	11	3	20	SUM	1.8	18	3	100	REM	5.5
1	3	3140	OUA	1.3	6	2	200	no	0.0	11	3	20	AMH	2.5	18	3	100	REM	1.0
1	3	3140	OUA	3.3	6	2	210	WHA	1.2	11	3	20	AMH	5.3	18	3	100	REM	4.8
1	3	140	GRB	3.8	6	2	210	WHA	1.3	11	3	20	WHA	1.0	18	3	100	REM	1.4
1	3	3150	oua	1.5	6	2	220	WHP	2.0	11	3	20	REM	4.9	18	3	100	REM	1.0
1	3	150	las	2.6	6	2	230	UHA	1.0	11	3	20	WHA	2.8	18	3	100	REM	4.6
1	3	3150	qua	1.0	6	2	230	WHA	1.3	11	3	20	AMH	4.1	18	3	100	BLC	4.4
1	3	150	OUA	1.1	6	2	230	WHA	1.0	11	3	20	WHA	3.0	18	3	100	REO	4.3
1	3	3150	OUA	1.0	6	2	240	NO	0.0	11	3	20	AMH	4.5	18	3	100	REO	2.2
1	3	150	WHA	1.4	6	2	250	WHA	2.4	11	3	20	WHA	1.6	18	3	100	REA	1.5
1	3	150	OUA	1.7	6	2	250	WHA	2.2	11	3	20	AMH	4.7	18	3	100	REM	2.6
1	3	150	LAA	1.2	6	2	250	WHA	1.4	11	3	20	AMH	3.4	18	3	100	REM	2.2
1	3	150	SWB	8.0	6	2	250	REO	2.2	11	3	20	AMH	3.2	18	3	100	REM	1.0
1	3	150	LAA	4.8	6	2	250	WHA	1.1	11	3	20	WHA	2.6	18	3	100	REM	1.0
1	3	160	OUA	1.8	6	2	250	WHA	1.1	11	3	20	AMK	5.8	18	3	100	REM	1.6
1	3	160	SAS	1.1	6	2	260	WHA	1.1	11	3	20	AMH	4.7	18	3	100	BLC	4.3
1	3	160	Qua	1.2	6	2	260	WHA	1.7	19	3	20	WHA	2.0	18	3	100	REM	2.1
1	3	160	LAA	1.0	6	2	260	WKA	1.2	11	3	20	WHA	1.6	18	3	100	REM	1.0
1	3	160	OUA	1.0	6	2	260	WHA	1.4	11	3	20	AMH	3.4	18	3	100	WHP	2.0
1	3	160	QUA	1.0	6	2	260	WHP	1.6	11	3	20	SUM	3.8	18	3	100	REM	2.8
1	3	160	oua	1.0	6	2	270	WHA	1.0	11	3	20	REM	4.7	18	3	100	REM	4.0
1	3	160	Qua	1.0	6	2	270	WHA	1.3	11	3	20	WHA	1.9	18	3	100	REM	1.1
1	3	160	QUA	1.1	6	3	10	WHP	3.7	11	3	20	AMH	2.4	48	3	100	REM	2.5
1	4	10	AMB	2.9	6	3	10	WHP	4.8	11	3	20	AMH	4.3	18	3	100	REM	1.7
1	4	10	AMB	1.5	6	3	10	WHP	3.4	11	3	20	AMH	2.8	18	3	110	REM	1.2
1	4	10	SUM	1.7	6	3	10	WHP	5.2	11	3	20	AMH	3.5	18	3	110	REM	1.1
1	4	10	LAA	4.0	6	3	10	WHP	6.7	11	3	20	AMH	2.8	18	3	110	REM	3.5
1	4	10	sum	2.1	6	3	10	WHP	1.0	11	3	20	AMH	2.6	18	3	110	REM	1.8
1	4	10	AMB	6.0	6	3	10	WHP	1.2	11	3	20	AMH	3.2	18	3	110	BLC	3.5
1	4	10	YEP	1.2	6	3	10	WhP	2.9	11	3	20	AHH	3.2	18	3	110	REM	2.3
1	4	10	SHH	4.3	6	3	10	WHP	3.8	11	3	20	AMH	4.8	18	3	110	REM	3.1
1	4	20	REM	2.2	6	3	10	WHP	4.9	11	3	20	AMH	3.7	18	3	110	BLC	5.1
1	4	20	LAA	2.0	6	3	10	WHP	3.1	11	3	20	AMH	3.3	18	3	110	REM	3.5
1	4	20	REM	1.6	6	3	10	WHP	1.8	11	3	20	AMH	3.6	18	3	110	PIC	3.0
1	4	20	SAS	2.3	6	3	10	WHP	4.6	11	3	20	AMH	5.2	18	3	110	BLC	1.0

Appendin Table 4 continued.

S	P	SP	SPP	HT	S	p	SP	P SPP	HT	S	P	\$P	SPP	Ht	S	p	SP	SPP	HT
				- m -					- m -					- m -					m
1	4	20	BIH	1.0	6	3	10	O WhP	5.8	11	3	20	AMH	3.9	18	3	170	EAH	7.0
1	4	20	SWB	1.7	6	3	10	0 WHP	11.0	11	3	20	AMH	3.5	18	3	110	DEM	1.6
1	4	20	SHH	2.8	6	3	10	O WHP	6.8	11	3	20	REO	4.8	18	3	110	REM	2.2
1	4	20	SUB	1.9	6	3	10	0 WHP	8.1	11	3	20	AMH	2.7	18	3	110	BLC	4.0
1	4	20	SWB	4.8	6	3	10	10 WHP	3.4	11	3	20	NWC	1.4	18	3	110	REM	4.5
1	4	20	SWB	1.7	6	3	10	10 WHP	5.4	11	3	20	AMH	4.4	18	3	110	REM	2.8
1	4	30	SWB	2.4	6	3	20	WHP	3.7	11	3	20	MEM	4.5	18	3	110	REM	1.2
1	4	30	SWB	2.1	6	3	20	WHP	5.3	11	3	20	REO	4.1	18	3	110	PAB	3.1
1	4	30	SWB	1.6	6	3	20	WHP	3.5	11	3	20	AMH	2.8	18	3	110	BLC	3.9
1	4	30	SWB	1.8	6	3	20	WHP	2.3	11	3	20	REM	4.7	18	3	110	REM	5.5
1	4	30	SWB	3.0	6	3	20	WHP	3.9	11	3	20	AnH	3.2	18	3	110	REM	2.5
1	4	30	5WB	2.5	6	3	20	WHP	1.2	11	3	20	AMH	5.3	18	3	110	BLC	3.8
1	4	30	SWB	2.7	6	3	20	WHP	3.4	11	3	20	AMH	3.8	18	3	110	REH	1.1
1	4	30	SWB	3.1	6	3	30	WHP	2.7	11	3	20	AHH	4.5	18	3	110	PIC	4.9
1	4	30	SWB	2.5	6	3	30	WHP	1.6	11	3	20	SUM	2.7	18	3	110	PAB	5.0
1	4	30	SWg	2.6	6	3	30	UHP	4.2	11	3	20	REM	4.1	18	3	110	PIC	4.5
1	4	30	SAS	1.8	6	3	30	WHP	2.7	11	3	30	AMH	3.3	18	3	110	PIC	2.6
1	4	40	SWB	2.2	6	3	30	WHP	2.2	11	3	30	AMH	3.5	18	3	110	REM	2.4
1	4	50	All	8.2	6	3	30	WHP	4.2	11	3	30	AHH	3.0	18	3	110	REM	1.3
1	4	60	BLO	4.8	6	3	30	WHP	5.8	11	3	30	AMH	4.6	18	3	110	REM	2.1
1	4	60	BLO	2.6	6	3	30	WHP	2.5	11	3	30	AMH	3.7	18	3	110	REM	1.5
1	4	60	WHA	2.8	6	3	30	WHP	4.2	11	3	30	AMH	2.8	18	3	110	PIC	4.5
1	4	60	BLO	3.5	6	3	40	OUA	2.9	11	3	30	AMH	3.5	18	3	110	REM	4.5
1	4	60	BLO	3.0	6	3	40	WHP	2.7	11	3	30	SUM	3.2	18	3	110	P48	5.0
1	4	70	NO	0.0	6	3	40	WHP	3.4	11	3	30	AMH	3.5	18	3	110	HEM	2.1
1	4	80	BLO	1.7	6	3	40	Qua	3.2	11	3	30	SUM	3.9	18	3	110	REM	3.5
1	4	80	BlO	5.0	6	3	40	OUA	1.6	11	3	30	AME	3.4	18	3	110	BLC	6.0
1	4	90	REO	1.3	6	3	40	OUA	1.3	11	3	30	AMH	4.4	18	3	110	REM	2.1
1	4	100	No	0.0	6	3	40	Qua	2.4	19	3	30	AMH	3.0	18	3	110	REM	3.1
1	4	110	NO	0.0	6	3	50	no	0.0	11	3	30	SU\#\#	4.0	18	3	110	REM	4.4
1	4	120	NO	0.0	6	3	60	WHP	3.2	11	3	30	AMH	3.4	18	3	110	PAB	5.0
1	4	130	BLO	1.6	6	3	60	REO	1.9	11	3	30	SLM	5.4	18	3	110	BLC	3.5
1	4	130	WHA	1.7	6	3	70	WHP	3.4	11	3	30	SUM	3.7	18	3	110	REM	2.8
1	4	140	Wha	1.2	6	3	70	WHP	3.1	11	3	30	SLM	3.3	18	3	110	PA8	6.0
1	4	140	BLO	1.4	6	3	70	WHP	3.4	11	3	30	AMH	4.0	18	3	110	REH	1.0
1	4	140	WHA	1.5	6	3	70	UHP	4.0	11	3	30	AMH	4.0	18	3	110	BLC	3.4
1	4	150	WHA	2.2	6	3	70	WHP	3.1	11	3	30	AMH	4.0	18	3	110	BLC	5.2
1	4	150	WHA	1.0	6	3	70	WHP	4.2	11	3	30	RED	1.8	18	3	110	REM	4.7
1	4	160	SHH	2.6	6	3	80	OUA	1.7	11	3	30	Sum	3.7	18	3	110	REM	1.6
1	4	160	BLC	1.9	6	3	90	NO	0.0	11	3	30	AMH	3.3	18	3	110	PAB	2.9
1	4	160	REO	4.2	6	3	100	NO	0.0	11	3	30	AMH	3.6	18	3	110	Pag	1.3
2	1	10	NO	0.0	6	3	110	no	0.0	11	3	30	WIM	1.4	18	3	110	8LC	4.3
2	1	20	No	0.0	6	3	120	WHA	1.1	11	3	30	AMH	3.2	18	3	110	Pab	5.3
2	1	30	NO	0.0	6	3	120	WHA	1.8	11	3	30	AMH	3.6	18	3	110	BLC	2.0
2	1	40	REM	3.8	6	3	120	WHA	4.8	11	3	30	SUM	4.5	18	3	110	AEM	5.5
2	1	50	REM	1.8	6	3	120	WHA	3.4	11	3	30	SUM	3.6	18	3	110	BLC	5.2
2	1	60	SWP	4.0	6	3	130	WHA	1.5	11	3	30	WHA	1.5	19	1	10	BLC	1.0
2	1	60	WHA	2.0	6	3	130	WHA	1.5	11	3	30	WHA	1.3	19	1	10	BlC	1.0
2	1	60	SWB	3.6	6	3	140	WHA	1.0	11	3	30	SUM	4.0	19	1	20	GRB	3.4
2	1	70	SWB	3.3	6	3	150	NO	0.0	11	3	30	SUM	1.5	19	1	20	REM	1.0
2	1	70	SWB	2.8	6	3	160	NO	0.0	11	3	30	AMH	2.7	19	1	30	NO	0.0
2	1	80	REM	2.5	6	3	170	no	0.0	11	3	30	SUM	4.4	19	1	40	NO	0.0
2	1	90	REM	1.1	6	3	180	NO	0.0	11	3	30	WHA	3.2	19	1	50	REM	1.7
2	1	90	SWB	1.7	6	3	190	WHA	1.0	11	3	30	SUH	4.6	19	1	50	REM	1.0

Appendix Table 4 continued.

\$	P	SP	SPP	HT	S	P	SP	SPP	Ht	S	P	SP	SPP	HT	\$	p	SP	SPP	HT
				- m -					- m -					- m -					- m
2	1	100	AMB	1.2	6	3	200	NO	0.0	11	3	30	WHA	3.1	19	1	60	REM	1.5
2	1	100	AMB	1.1	6	3	210	NO	0.0	11	3	30	WHA	4.0	19	1	60	REM	1.7
2	1	100	SWB	1.9	6	3	220	REO	1.1	11	3	30	WHA	1.6	19	1	60	REM	1.6
2	1	100	REM	1.6	6	3	230	No	0.0	11	3	30	SUM	3.6	19	1	60	BLC	1.4
2	2	10	REM	12.0	6	3	240	NO	0.0	11	3	30	AMH	3.5	19	1	60	BLC	1.3
2	2	10	REM	14.0	6	3	250	NO	0.0	11	3	30	SUM	2.7	19	1	60	BLC	1.1
2	2	10	REM	2.8	6	3	260	WHP	1.5	11	3	30	AMH	2.6	19	1	60	BLC	2.6
2	2	10	REM	1.0	6	3	270	WHP	1.9	11	3	30	SUM	4.7	19	1	60	REM	1.0
2	2	10	SWB	2.4	6	4	10	WHP	1.0	11	3	30	WHA	1.4	19	1	60	REM	1.2
2	2	10	SWB	4.7	6	4	10	WHP	1.6	11	3	30	SUM	4.1	19	1	70	BLC	1.1
2	2	10	REM	2.5	6	4	10	WHP	6.0	11	3	30	AMH	3.9	19	1	70	BLC	1.0
2	2	10	WHO	1.0	6	4	10	WHP	4.2	11	3	30	SLPM	4.6	19	1	70	BLC	2.7
2	2	20	REM	3.0	6	4	10	WHP	6.0	11	3	30	AMH	3.1	19	1	80	BtC	3.3
2	2	20	SWB	2.1	6	4	10	WHP	5.8	11	3	30	SUM	5.3	19	1	90	BLC	3.3
2	2	20	SWB	7.5	6	4	10	WHP	3.6	11	3	30	AMH	3.7	19	1	100	BLC	1.0
2	2	20	SWE	17.0	6	4	10	WHP	9.4	11	3	30	SUM	3.0	19	1	100	BLC	2.3
2	2	20	YEB	8.0	6	4	10	WHP	5.5	11	3	30	AMH	3.5	19	1	110	HO	0.0
2	2	20	SWB	2.7	6	4	10	WHP	9.8	11	3	30	WHA	3.5	19	1	120	BLC	1.3
2	2	20	REM	1.5	6	4	10	WHP	4.8	11	3	30	AMH	3.2	19	1	120	BLC	1.3
2	2	20	REM	15.5	6	4	10	WHP	1.9	11	3	30	AMH	2.7	19	1	120	8LC	1.1
2	2	20	SWB	1.2	6	4	10	WHP	9.8	11	3	30	AMH	4.1	19	1	120	BLC	1.0
2	2	20	REM	8.5	6	4	10	WHP	3.4	11	3	30	AMH	3.0	19	1	130	BLC	1.0
2	2	20	SHB	3.5	6	4	10	WHP	5.8	11	3	30	AHH	2.6	19	1	140	BLC	1.0
2	2	20	REM	4.7	6	4	10	WHP	5.8	11	3	30	AMH	2.9	19	1	140	BtC	1.0
2	2	20	SWB	2.3	6	4	10	WHP	10.3	11	3	30	WHA	4.9	19	1	140	8LC	2.0
2	2	20	REM	6.4	6	4	10	WHP	6.7	11	3	30	AMH	3.0	19	1	140	BLC	2.0
2	2	20	SHB	2.3	6	4	10	WHP	12.1	11	3	30	5UM	4.1	19	1	150	BLC	1.5
2	2	20	Sw	17.0	6	4	10	WHP	4.8	11	3	30	Wha	1.6	19	1	150	BLC	1.3
2	2	30	SWB	19.0	6	4	10	WHP	1.0	11	3	30	SUM	3.5	19	1	150	GRB	1.3
2	2	30	YEB	18.0	6	4	20	REM	1.6	11	3	30	SUM	3.8	19	1	150	BLC	1.3
2	2	30	SWB	5.6	6	4	20	WHA	1.3	11	3	30	Sum	4.7	19	1	150	BLC	1.3
2	2	40	REM	2.4	6	4	20	OUA	1.0	11	3	30	Sum	5.1	19	1	150	BLC	1.3
2	2	50	NO	0.0	6	4	20	qua	1.0	11	3	30	SUM	4.8	19	1	160	NO	0.0
2	2	60	SWB	3.1	6	4	20	WHA	1.2	11	3	30	AMH	2.7	19	1	170	NO	0.0
2	2	60	SNB	2.0	6	4	20	WHA	1.2	11	3	30	SUM	5.5	19	1	180	BLC	1.5
2	2	60	YEB	1.2	6	4	20	WHP	6.1	11	3	30	AMH	3.1	19	1	190	8LC	2.3
2	2	60	\$WE	1.9	6	4	20	WHP	4.5	11	3	30	AMH	3.9	19	1	200	BLC	2.0
2	2	60	SWB	1.3	6	4	20	QUA	1.2	11	3	30	WHA	3.6	19	1	200	BLC	1.5
2	2	60	SWB	2.1	6	4	20	WHP	3.4	11	3	30	AMH	4.6	19	1	200	BLC	1.1
2	2	60	SWB	2.2	6	4	20	REM	1.4	11	3	30	AMH	3.3	19	1	200	BLC	1.3
2	2	60	YEB	1.5	6	4	20	WHP	7.0	11	3	30	WHA	2.8	19	1	200	BLC	2.0
2	2	70	Blo	1.3	6	4	20	REM	1.8	11	3	30	Sum	4.6	19	1	200	BLC	1.6
2	2	70	BLO	2.1	6	4	20	WHP	4.7	11	3	30	AMH	3.6	19	1	210	8LC	1.7
2	2	80	Yeg	1.0	6	4	20	WHP	7.0	11	3	30	AMM	2.9	49	1	210	BLC	2.0
2	2	80	YEB	1.5	6	4	20	WHA	1.1	11	3	30	AMH	3.3	19	1	210	BLC	2.0
2	2	80	YEB	1.3	6	4	20	WHP	6.0	11	3	30	SUM	3.1	19	1	210	8LC	2.8
2	2	80	YES	1.5	6	4	30	WHP	4.8	11	3	30	AMH	3.8	19	1	210	BLC	3.0
2	2	80	YEB	1.1	6	4	30	WHP	5.4	11	3	30	AMH	2.6	19	1	210	REM	1.3
2	2	80	YEB	1.6	6	4	30	WHA	1.1	11	3	30	AMH	4.3	19	1	210	REM	2.5
2	2	80	BLO	1.6	6	4	30	WHP	4.7	11	3	30	SUM	2.1	19	1	210	BLC	1.1
2	2	80	YEB	1.6	6	4	40	WHP	4.4	11	3	30	AMH	3.0	19	1	210	BLC	2.0
2	2	80	YEB	2.4	6	4	40	WHP	4.8	11	3	30	WHA	2.3	19	1	210	BLC	1.6
2	2	80	YEB	1.1	6	4	40	qua	1.0	11	3	30	SUM	3.0	19	1	210	BLC	1.8
2										11				5.5	19				

Appendix Table 4 continued.

\$	p	SP	SPP	HT	5	P	SP	P SPP	HT	S	P	5P	SPP	HT	\$	P	SP	SPP	HT
				- m -					- m-					- m					- m -
2	2	80	YEB	1.2	6	4	40	0 WHP	1.6	11	3	30	AMH	3.3	19	1	210	BLC	1.0
2	2	80	BLO	1.2	6	4	40	0 GRB	1.1	11	3	30	SUM	5.8	19	1	240	BLC	1.1
2	2	80	YEB	1.8	6	4	40	REO	2.3	17	3	30	AMH	2.7	19	1	210	BLC	1.8
2	2	80	YE8	1.3	6	4	50	OUA	1.3	11	3	30	SUM	5.2	19	1	220	BLC	1.5
2	2	80	YEB	1.3	6	4	50	WHP	1.5	19	3	30	AMH	4.0	19	1	220	REM	1.3
2	2	80	日LO	1.0	6	4	50	cua	1.2	11	3	30	AMH	3.9	19	1	220	REM	1.2
2	2	80	YEB	1.6	6	4	50	Qua	2.0	11	3	30	SUM	4.1	19	1	220	BLC	1.7
2	2	90	BLO	1.0	6	4	50	UHA	1.3	11	3	30	AMH	4.2	19	1	220	8LC	1.0
2	2	90	YEB	1.1	6	4	50	OUA	1.0	11	3	30	АMH	1.8	19	1	220	BLC	1.1
2	2	90	YEB	1.1	6	4	50	O OUA	2.1	11	3	30	AHH	4.5	19	1	230	BLC	1.7
2	2	100	YEB	1.3	6	4	60	REO	3.1	11	3	30	SUM	3.6	19	1	230	BLC	1.8
2	2	100	REM	1.3	6	4	60	REO	2.9	11	3	30	AMH	2.5	19	1	230	BLC	2.0
2	2	100	WHA	1.4	6	4	60	OUA	1.9	11	3	30	SUM	4.9	19	1	230	BLC	4.1
2	2	100	BLO	1.0	6	4	60	WHA	1.6	11	3	30	SUM	2.8	19	1	230	BLC	1.0
2	2	100	YEB	1.1	6	4	60	REO	3.5	11	3	30	AMH	1.8	19	1	230	REH	2.5
2	2	100	YEB	1.2	6	4	60	WHP	3.9	11	3	30	ANH	4.1	19	1	230	BLC	1.3
2	2	100	BLO	1.5	6	4	60	OUA	5.4	11	3	30	AMH	2.5	19	1	230	BLC	1.8
2	2	100	YEB	1.1	6	4	60	REO	2.4	11	3	30	AMH	2.0	19	1	230	REM	1.6
2	2	100	BLO	1.5	6	4	60	WHP	3.5	11	3	30	AMH	4.0	19	1	230	8LC	2.0
2	2	100	YEB	2.0	6	4	60	WHP	2.8	11	3	30	AMH	2.8	19	1	230	REM	1.1
2	2	100	SHH	1.0	6	4	60	REO	2.0	11	3	30	SUM	3.0	19	1	230	REM	1.0
2	2	100	YEB	1.7	6	4	70	WHP	2.6	11	3	30	AMH	3.0	19	1	230	BLC	1.4
2	2	100	REM	1.5	6	4	70	WHP	2.4	11	3	30	AMH	2.9	19	1	230	BLC	1.0
2	2	100	VEB	1.1	6	4	70	WHA	1,2	11	3	30	AMH	3.0	19	1	230	BLC	1.5
2	2	100	BLO	1.1	6	4	70	WHP	3.5	11	3	30	AHH	2.7	19	1	230	BLC	1.8
2	2	100	BLO	1.0	6	4	70	WHA	1.0	11	3	30	ANH	2.7	19	1	235	BLC	1.8
2	2	100	YEB	1.3	6	4	70	REO	1.2	11	3	40	AMH	1.4	19	1	235	BLC	2.0
2	2	110	NO	0.0	6	4	80	WHP	1.5	11	3	40	Su*	2.4	19	1	235	6LC	1.1
2	2	120	NO	0.0	6	4	90	NO	0.0	11	3	40	AMH	2.5	19	1	235	REM	1.9
2	2	130	SHM	1.0	6	4	100	NO	0.0	11	3	40	SUM	3.5	49	1	235	BLC	3.5
2	2	130	REM	1.6	6	4	110	NO	0.0	11	3	40	SUM	4.7	19	1	235	8LC	1.2
2	2	140	REM	1.0	6	4	120	no	0.0	11	3	40	SUM	1.6	19	1	235	BLC	2.7
2	2	140	REM	1.5	6	4	130	REO	2.4	11	3	40	Sum	4.6	19	1	235	BLC	1.4
2	2	140	REM	1.5	6	4	130	REO	2.6	11	3	40	SUM	1.2	19	2	10	BAf	2.1
2	2	140	REM	1.0	6	4	140	NO	0.0	11	3	40	Su4	2.2	19	2	10	REM	1.3
2	2	140	REM	1.7	6	4	150	No	0.0	11	3	40	SUM	4.4	19	2	10	AHB	1.1
2	2	140	YEB	1.1	6	4	160	NO	0.0	11	3	40	SUM	3.2	19	2	10	BLS	4.2
2	2	140	REM	1.6	6	4	170	NO	0.0	11	3	40	AMH	2.5	19	2	10	REM	1.1
2	2	140	REM	1.5	6	4	180	NO	0.0	11	3	40	Sum	3.3	19	2	10	GRB	1.3
2	2	140	YE8	1.0	6	4	190	no	0.0	11	3	40	SUM	3.4	19	2	10	GRB	3.0
2	2	150	YEB	1.2	6	4	200	no	0.0	11	3	40	SUMM	4.8	19	2	10	ELS	4.2
2	2	150	REO	13.0	6	4	210	N0	0.0	11	3	40	AMH	4.0	19	2	10	GRB	1.2
2	2	150	SWB	17.0	6	4	220	HO	0.0	11	3	40	SUM	1.7	19	2	10	AMB	1.2
2	2	150	REM	2.0	6	4	230	no	0.0	11	3	40	AMM	3.0	19	2	10	BLS	4.2
2	2	150	REO	19.0	6	4	240	no	0.0	11	3	40	AMH	3.5	19	2	10	CRB	3.0
2	2	150	REM	17.0	6	4	250	no	0.0	11	3	40	AMH	2.2	19	2	20	GRB	1.7
2	2	150	SWB	20.0	6	4	260	no	0.0	11	3	40	SUM	4.4	19	2	20	GRB	1.1
2	2	150	REM	2.0	6	4	270	NO	0.0	11	3	40	AMH	3.4	19	2	20	GRE	1.3
2	2	150	YEB	1.3	6	5	10	QuA	1.4	11	3	40	AMH	3.6	19	2	20	WHP	1.3
2	2	150	REM	1.4	6	5	10	WHA	1.6	11	3	40	AMH	2.6	19	2	20	GRE	1.2
2	3	10	no	0.0	6	5	10	Qua	1.4	11	3	40	AME	1.6	19	2	20	CRB	2.3
2	3	20	NO	0.0	6	5	10	OUA	1.8	11	3	40	AMH	3.5	19	2	20	6RB	1.0
2	3	30	no	0.0	6	5		WHP	3.0	11	3	40	AMH	2.7	19	2	20	CRB	1.0
2	3		no	0.0	6	5		OUA	1.0	11	3	40	WHA	3.4	19	2	30	BAF	1.9

Appendix Table 4 continued.

5	p	SP	SPP	HT	5	P	SP	SPP	HT	5	P	SP	SPP	HT	5	P	$5 p$	SPP	HT
				- m -					- m					- m -					- m
2	3	50	no	0.0	6	5	10	OUA	1.9	11	3	40	AME	1.8	19	2	30	CRB	2.5
2	3	60	no	0.0	6	5	10	Qua	1.6	11	3	40	AMK	2.5	19	2	30	GRB	2.7
2	3	70	no	0.0	6	5	10	OUA	1.2	11	3	40	AMH	4.1	19	2	30	GRB	3.1
2	3	80	no	0.0	6	5	10	LHA	1.0	11	3	40	AME	3.1	19	2	30	GRE	1.6
3	2	10	NO	0.0	6	5	10	Qua	1.3	19	3	40	AMH	2.6	19	2	30	GRB	2.2
3	2	20	MO	0.0	6	5	10	QUA	2.3	11	3	40	AMH	2.3	19	2	30	REM	1.3
3	2	30	REM	4.4	6	5	10	Qua	1.0	11	3	40	AMH	3.5	19	2	30	REM	1.4
3	2	30	8LO	4.1	6	5	10	OUA	2.7	11	3	40	AMH	2.3	19	2	30	GRB	2.4
3	2	30	PIC	4.1	6	5	10	OUA	2.2	19	3	40	AMH	2.5	19	2	40	BAF	2.2
3	2	30	PIC	4.2	6	5	10	OUA	2.2	11	3	40	SUM	1.6	19	2	40	GRB	3.3
3	2	30	PIC	4.0	6	5	10	QUA	2.7	11	3	40	AMH	3.0	19	2	40	GRB	3.4
3	2	30	PIC	4.0	6	5	10	OUA	3.1	11	3	40	WHA	2.2	19	2	40	GRB	3.7
3	2	40	REm	3.6	6	5	10	REM	1.1	11	3	40	AMH	2.7	19	2	40	GRB	2.5
3	2	40	REM	4.6	6	5	10	OUA	2.6	11	3	40	SUM	2.4	19	2	40	CRB	3.4
3	2	40	REH	3.8	6	5	10	OUA	1.4	11	3	40	AMH	3.8	19	2	40	GRB	3.4
3	2	50	HOH	5.8	6	5	10	OUA	4.0	11	3	40	AMH	2.2	19	2	50	NO	0.0
3	2	50	SUM	3.5	6	5	20	OUA	4.6	11	3	40	AMH	2.8	19	2	80	REM	2.4
3	2	50	HOH	6.3	6	5	20	QUA	2.8	11	3	40	SUM	3.1	19	2	70	CRE	6.0
3	2	50	HOH	3.6	6	5	20	qua	2.3	11	3	40	AMH	2.9	19	2	80	No	0.0
3	2	60	HOH	4.3	6	5	20	oun	2.8	11	3	40	AMH	2.7	19	2	90	GRB	1.6
3	2	60	SAS	2.6	6	5	20	QuA	4.2	11	3	40	AMH	2.7	19	2	90	GR8	1.4
3	2	60	WHA	2.5	6	5	20	OUA	3.5	11	3	40	SUM	2.2	19	2	90	CRB	1.8
3	2	60	SAS	5.6	6	5	20	REM	2.4	11	3	40	SUM	4.8	19	2	90	GRB	1.7
3	2	60	WHA	1.5	6	5	20	QUA	2.6	11	3	40	AMH	3.1	19	2	90	REM	1.0
3	2	60	CHO	2.0	6	5	20	REM	1.8	11	3	40	WHA	2.9	19	2	90	REM	1.1
3	2	60	HOH	6.0	6	5	20	QUA	3.1	11	3	40	WHA	1.0	19	2	90	GRB	1.2
3	2	60	HOH	5.2	6	5	20	WHA	1.2	11	3	40	AMH	3.4	19	2	90	REM	1.0
3	2	60	HOH	5.8	6	5	20	QUA	2.4	11	3	40	AMH	4.2	19	2	90	GRE	2.5
3	2	60	нно	3.5	6	5	20	Qua	3.5	11	3	40	AMH	2.7	19	2	100	GR8	1.6
3	2	60	Stm	2.4	6	5	20	Qua	3.1	11	3	40	SUM	4.2	19	2	110	BLC	1.0
3	2	60	SAS	3.3	6	5	20	OUA	2.9	11	3	40	SUM	2.6	19	2	110	GR8	1.2
3	2	70	HOH	5.2	6	5	20	QuA	2.5	11	3	40	MHH	2.6	19	2	110	GRB	1.3
3	2	70	SHM	2.8	6	5	20	OUA	4.3	11	3	40	AME	2.9	19	2	110	BLC	1.6
3	2	70	SAS	3.0	6	5	20	OUA	2.3	11	3	40	Sum	3.3	19	2	110	REM	1.2
3	2	70	Sum	2.0	6	5	20	OUA	2.7	11	3	40	SUM	2.6	19	2	120	NO	0.0
3	2	70	HOH	2.1	6	5	20	QUA	2.2	11	3	40	AMM	2.4	19	2	130	NO	0.0
3	2	80	WHO	2.5	6	5	20	OUA	3.4	11	3	40	SUM	2.0	19	2	140	NO	0.0
3	2	80	HOH	4.1	6	5	20	OUA	2.9	11	3	40	AHM	2.2	19	2	150	GRB	5.6
3	2	80	SUM	1.6	6	5	20	WHP	2.8	11	3	40	SUM	2.6	19	2	150	GRB	4.1
3	2	80	SAS	2.4	6	5	20	OUA	2.2	11	3	40	AMH	4.4	19	2	150	GRB	4.0
3	2	80	REM	3.3	6	5	20	OUA	3.5	11	3	40	SUM	3.6	19	2	160	GRB	3.4
3	2	90	WHA	1.9	6	5	20	OUA	2.6	11	3	40	AMH	3.5	19	2	160	REM	1.1
3	2	100	REM	2.7	6	5	30	WHP	2.8	11	3	40	SUM	4.7	19	2	160	REM	1.1
3	2	100	HOH	5.1	6	5	30	WHA	1.0	11	3	40	AMH	3.7	19	2	160	REM	1.6
3	2	110	NO	0.0	6	5	30	QUA	2.9	11	3	40	Sum	2.0	19	2	170	HO	0.0
3	2	120	WHA	7.2	6	5	30	WHP	2.3	11	3	40	AMH	3.3	19	2	180	REM	1.4
3	2	120	WHA	1.8	6	5	30	WHP	2.0	11	3	40	AMH	2.2	19	2	190	REM	1.0
3	2	120	HHA	1.8	6	5	30	OUA	3.1	11	3	40	AMH	2.1	19	2	200	GRB	2.0
3	2	120	Hor	4.1	6	5	30	WHA	1.0	11	3	40	AMH	3.3	19	2	210	SHB	2.0
3	3	10	CHO	1.9	6	5	30	WHA	1.0	11	3	40	AMH	3.5	19	2	210	BAF	13.5
3	3	10	CHO	2.3	6	5	40	QUA	1.4	11	3	40	AMH	3.3	19	2	210	RES	1.9
3	3	20	CHO	1.2	6	5	40	QUA	1.1	11	3	40	AMH	3.5	19	2	210	BAF	10.0
3	3	30	CHO	1.3	6	5	50	NO	0.0	11	3	40	AMH	1.7	19	2	210	REM	1.0
3	3	30	CHO	1.3	6	5	60	NO	0.0	11	3	40	AMH	2.5	19	2	220	baf	5.8

Appendix Table 4 continued.

5	P		SP SPP	HT	5	P	SP	SPP	HT	5	P			HT	S	P	SP		H!
				- \quad -					- m -					- m *					m
3	3		\% no	0.0	6	5	70	no	0.0	11	3	40	AMH	1.6	19	2	220	baf	1.2
3	3		50 YEP	2.2	6	5	80	WHP	3.2	11	3	40	анн	3.5	19	2	220	REM	4.6
3	3		50 YEP	2.5	6	5	90	WHA	1.5	11	3	40	sum	4.2	19	2	220	bla	5.8
3	3	60	60 BIH	1.5	6	5	90	REO	1.2	11	3	40	AMH	2.7	19	2	220	bla	7.0
3	3	60	60 YEP	2.0	6	5	100	no	0.0	11	3	40	Sum	4.7	19	2	220	baf	8.5
3	3		70 но	0.0	6	5	110	NO	0.0	11	3	40	AMH	2.9	19	2	220	84F	2.2
3	3		80 no	0.0	6	5	120	no	0.0	11	3	40	Sum	4.2	19	2	220	BLL	6.9
3	3		\% no	0.0	6	5	130	REO	1.5	11	3	40	AMH	3.5	19	2	220	REM	1.7
3	3	100	no	0.0	6	5	130	REO	1.3	11	3	40	Sum	2.0	19	2	220	GRB	9.0
3	3	110	10 5w	3.2	6	5	140	WHA	1.2	11	3	40	AMH	3.7	20	1	10	Grb	1.5
3	3	110	110 сно	2.8	6	5	140	WHA	1.6	11	3	40	sum	1.9	20	1	10	CRB	1.8
3	3	110	10 sws	3.3	6	5	150	NO	0.0	11	3	40	AMM	3.0	20	1	10	REM	1.7
3	3	110	10 REM	1.5	6	5	160	no	0.0	11	3	40	Амн	2.7	20	1	10	REM	1.8
3	3	110	10 SWB	2.3	6	5	170	No	0.0	11	3	40	амн	3.2	20	1	10	blc	2.5
3	3	110	10 sub	3.3	6	5	180	No	0.0	11	3	40	Sum	4.2	20		10	BLC	1.9
3	3	110	10 sus	1.4	6	5	190	no	0.0	11	3	40	AMH	2.6	20	1	10	GRE	1.4
3	3	110	10 548	1.5	6	5	200	Pic	1.0	11	3	40	Sum	2.7	20	1	10	REM	2.1
3	3	110	$10 \mathrm{sw8}$	1.4	6	5	200	PIC	1.0	11	3	40	АलН	2.2	20	1	20	GRB	1.2
3	3	120	20 SWB	1.9	6	5	210	WHP	2.1	11	3	40	WHA	1.6	20	,	30	CRB	1.1
3	3	120	20 swe	3.0	6	5	220	no	0.0	11		40	AMH	1.2	20	1	40	\%	0.0
3	3	120	20 Sub	2.5	6	5	230	WHP	1.3	11	,	40	AMH	2.6	20	1	50	no	0.0
3	3	120	20 SWB	2.8	6	5	240	GRB	1.2	11	3	40	AMH	1.7	20	1	60		0.0
3	3	120	20 SWB	3.0	6	5	250	dua	1.3	11	3	40	sum	4.6	20		70	ble	1.1
3	3	120	20 blo	3.1	6	5	260	GRB	1.1	11	3	40	AMH	2.2	20	1	80	N0	0.0
3	3	120	20 swb	2.8	6	5	270	REM	3.6	11	3	40	Sum	4.1	20	1	90	no	0.0
3	3	120	20 Swe	2.3	6	5	270	REM	2.3	11	3	40	АMH	2.7	20	1	100	но	0.0
4	1		10 SWB	1.7	6	5	270	WHP	1.9	11	3	40	sum	2.7	20	1	110	No	0.0
4	1	10	10 SUB	4.4	6	5	270	REM	3.0	11	3	40	AMH	3.1	20	1	120	HO	0.0
4	1	10	10 REM	1.5	8	1	10	SWB	1.0	11	3	40	WHA	2.3	20	1	130	но	0.0
4	1		$10 \mathrm{SWB}$	4.4	8	1	20		0.0	11	3	40	AMH	3.1	20	1	140	no	0.0
4	1	10	10 СНО	1.2	8	1	30	SWE	1.1	11	3	40	SUM	2.5	20	1	150	no	0.0
4	1	10	0 сно	1.2	8	1	40	no	0.0	11	3	40	AMh	3.0	20	1	160	No	0.0
4	1	10	10 SHB	1.1	8	1	50	NO	0.0	11	3	40	WHA	2.9	20	1	170	wo	0.0
4	1	10	10 Yeb	1.9	8	1	60	no	0.0	11	3	40	AMH	3.7	20	-	180	no	0.0
4	1		$10 \mathrm{YEB}$	1.9	8	1	70	no	0.0	11	3	40	AMH	2.7	20	1	190	no	0.0
4	1	10	10 REM	2.8	8	1	80	no	0.0	11	3	40	AMH	3.5	20	1	200	no	0.0
4	1	10	0 REM	3.3	8	1	90	swb	1.0	11	3	40	sum	4.3	20	1	210	PIC	1.4
4	1	10	10 SW日	1.1	8	1	100	SWB	1.0	11	3	40	AMH	3.2	20	1	220	NO	0.0
4	1	10	0 Swe	1.1	8	1	110	SWB	1.6	11	3	40	Sum	2.9	20	1	230	PIC	1.0
4	1	10	0 grb	2.8	8	1	120	no	0.0	11	3	40	AMH	4.0	20	1	230	PIC	1.3
4	1	10	0 5w	3.1	8	1	130	no	0.0	11	3	50	AMH	2.0	20	1	240	PIC	1.0
4	1	10	0 CHO	1.2	8	1	140	no	0.0	11	3	50	AMH	3.3	20	1	240	RES	1.2
4	1	10	0 GRB	3.5	8	2	10	AMH	1.7	11	3	50	AMH	2.7	20	1	240	PIC	1.3
4	1	10	0 REM	1.5	8	2	10	AMM	1.3	11	3	50	AMH	2.3	20	1	250	No	0.0
4	1	10	0 Sws	3.1	8	2	10	SWB	1.8	11	3	50	AMH	3.0	20	2	10	REM	1.5
4	1	10	0 SHB	1.8	8	2	10	Amh	1.2	11	3	50	AMH	2.1	20	2	10	REM	1.4
4	1	10	0 Sub	3.7	8	2	10	SWb	1.3	11	3	50	AMH	2.7	20	2	10	blc	1.0
4	1	10	0 reb	1.9	8	2	10	SWB	1.2	11	3	50	AMH	2.0	20	2	10	8LC	2.5
4	1	20	0 REM	1.1	8	2	10	Sus	1.0	11	3	50	AMH	3.2	20	2	10	REM	2.6
4	1	20	0 RED	3.3	8	2	10	HOH	8.4	11	3	50	AMH	2.7	20	2	10	REM	4.1
4		20	0 REM	1.0	8	2	10	SW3	1.0	11	3	50	AMH	2.6	20	2	10	8LC	1.3
4	1	20	0 blo	2.0	8	2	10	AMH	7.7	11	3	50	AMH	2.1	20	2	10	aEm	1.5
4	1	20	0 REM	1.5	8	2	10	SHB	1.9	11	3	50	sum	2.7	20	2	10	REM	2.6
4	1	20	0 SHB	2.6	8	2		AMH	4.8	11	3			1.6	20	2	10	REM	2.3

Appendix Table 4 continued.

S	P	\$P	SPP	HT	S	P	SP	SPP	HT	\$	p	SP	SPP	HT	S	P	SP	\$PP	HT
				- m -					- m -					- m -					- m
4	1	20	SLP	3.5	8	2	10	SWB	1.7	19	3	50	SUM	4.1	20	2	10	REM	1.0
4	1	30	no	0.0	8	2	10	AMH	5.4	11	3	50	AMH	3.2	20	2	10	REM	3.7
4	1	40	REW	1.7	8	2	10	AMB	1.2	11	3	50	AMH	1.6	20	2	10	REM	3.1
4	1	40	REM	1.7	8	2	10	HOH	5.8	11	3	50	AMH	2.2	20	2	10	REM	2.2
4	1	40	P1C	1.3	8	2	10	AmH	7.7	11	3	50	AMH	3.2	20	2	10	REM	1.2
4	1	50	no	0.0	8	2	10	HOH	1.4	11	3	50	AMH	2.0	20	2	10	REM	3.4
4	1	60	REM	1.0	8	2	10	SWB	1.3	11	3	50	AMH	1.7	20	2	10	REM	1.8
4	1	60	REM	1.0	8	2	10	AMH	8.7	11	3	50	AMH	2.4	20	2	10	REM	4.2
4	1	70	REM	1.0	8	2	20	AMh	2.8	11	3	50	AMH	2.5	20	2	10	REM	1.9
4	1	70	REM	1.0	8	2	20	SWB	1.8	14	3	50	AMH	3.7	20	2	10	BLC	1.7
4	1	70	REM	1.1	8	2	20	AMH	2.6	11	3	50	AMH	2.6	20	2	10	REM	6.0
4	1	75	SWB	1.1	8	2	20	AMH	1.7	11	3	50	AMH	3.0	20	2	20	REM	1.0
4	2	10	SW8	1.0	8	2	20	AMH	1.3	11	3	50	AMH	2.7	20	2	30	BLC	1.0
4	2	10	SWB	1.2	8	2	20	AMH	2.3	11	3	50	AMH	2.8	20	2	30	PIC	1.1
4	2	10	SWB	1.0	8	2	20	SWB	1.6	11	3	50	AMH	2.8	20	2	40	NO	0.0
4	2	10	SW8	1. 1	8	2	20	AMH	5.8	11	3	50	AMH	2.2	20	2	50	MO	0.0
4	2	10	SWB	1.4	6	2	20	SWG	2.3	11	3	50	AMH	1.8	20	2	60	PIC	1.3
4	2	10	REM	1.1	8	2	20	AMH	2.4	11	3	50	AMH	2.0	20	2	60	PIC	1.5
4	2	10	SWB	4.0	8	2	20	SWB	1.7	11	3	50	AMH	1.7	20	2	60	PIC	1.5
4	2	10	\$WB	1.0	8	2	20	AMH	2.2	11	3	50	AMH	2.8	20	2	70	HO	0.0
4	2	20	SWB	1.4	8	2	20	AMH	4.4	11	3	50	AMH	2.8	20	2	80	NO	0.0
4	2	20	SW8	1.0	8	2	20	AMH	1.7	11	3	50	AMH	2.0	20	2	90	PIC	1.2
4	2	20	SWB	1.0	B	2	20	SWB	3.0	11	3	50	WHA	1.0	20	2	90	BLC	1.3
4	2	20	SWB	1.4	8	2	20	AMH	1.4	11	3	50	AMH	2.2	20	2	90	BLC	1.0
4	2	20	SWE	1.0	B	2	20	AMH	1.7	11	3	50	AMH	3.0	20	2	100	NO	0.0
4	2	30	REO	1.8	8	2	20	HOH	6.8	11	3	50	WHA	2.8	20	2	110	BLC	1.5
4	2	30	SWB	1.4	8	2	20	AMH	2.9	11	3	50	AMH	2.2	20	2	110	BLC	1.3
4	2	30	SWB	4.3	8	2	20	AMH	1.3	11	3	50	AMH	2.6	20	2	110	PIC	1.1
4	2	30	5WB	1.4	8	2	20	AMH	2.3	11	3	50	AMH	2.3	20	2	120	PIC	1.5
4	2	30	SUM	1.0	8	2	20	AMH	5.8	11	3	50	AMH	2.2	20	2	130	NO	0.0
4	2	30	SUM	1.0	8	2	20	AMM	1.8	11	3	50	AMH	2.1	20	2	140	NO	0.0
4	2	40	5um	1.6	8	2	20	AMH	2.2	11	3	50	SUM	4.6	20	2	150	NO	0.0
4	2	50	NO	0.0	8	2	20	AMH	1.7	11	3	50	AMH	2.8	20	2	160	NO	0.0
4	2	60	SUM	4.8	8	2	30	AMH	1.5	11	3	50	AMH	3.0	20	2	170	PIC	1.4
4	2	60	\$UH	3.5	8	2	30	AMH	1.4	11	3	50	AMH	2.3	20	2	180	BLC	1.1
4	2	70	no	0.0	8	2	30	AMH	2.3	11	3	50	AMH	2.4	20	2	190	BLC	1.8
4	2	75	SUM	3.8	8	2	30	AMH	1.4	19	3	50	WHA	1.4	20	2	190	BLC	1.5
4	2	75	Sum	6.3	8	2	30	AMH	1.8	11	3	50	WHA	1.7	20	2	190	BLC	1.8
4	3	10	HD	0.0	8	2	40	AMH	1.0	11	3	50	NWC	3.2	20	2	190	BLC	1.5
4	3	20	NO	0.0	B	2	40	AMH	1.1	11	3	50	AMH	2.1	20	2	200	No	0.0
4	3	30	NO	0.0	8	2	40	AMH	2.8	11	3	50	WHa	1.6	20	2	210	BtC	2.6
4	3	40	HO	0.0	8	2	40	AMH	1.3	11	3	50	AMH	2.6	20	2	210	BLC	2.7
4	3	50	no	0.0	8	2	40	AMH	1.2	11	3	50	WHA	1.3	20	2	210	BLC	2.6
4	3	60	NO	0.0	8	2	40	AMH	1.2	11	3	50	AMH	2.3	20	2	210	BLC	1.0
4	3	70	no	0.0	8	2	40	AMH	1.1	11	3	50	AMH	1.6	20	2	210	BLC	2.5
4	3	80	no	0.0	8	2	50	SHE	2.3	11	3	50	AMH	3.2	20	2	210	BLC	2.6
4	3	90	NO	0.0	8	2	50	SWB	2.1	11	3	50	AMH	1.6	20	2	210	BLC	1.0
4	3	100	NO	0.0	8	2	50	$A M H$	1.3	11	3	50	AMH	2.3	20	2	220	MO	0.0
5	1	10	REM	6.4	8	2	50	AMH	1.4	11	3	50	AMH	1.6	20	2	230	No	0.0
5	1	10	REM	7.1	B	2	50	SWB	2.5	11	3	50	AMH	1.8	20	2	240	BLC	1.0
5	1	10	AME	13.5	8	2	50	SWB	2.1	11	3	50	AMH	2.3	20	2	250	NO	0.0
5	1	10	REM	4.2	8	2	50	SWB	2.5	11	3	50	AME	2.0	20	2	260	NO	0.0
5	1	10	REM	3.2	8	2	50	REO	1.1	11	3	50	AMH	2.7	20	2	270	PIC	2.4
5	1	10	REM	2.7	8	2	50	AMH	1.1	14	3	50	AMH	2.7	21	1	10	REM	3.7

NTN

[^10]n

Appendix table 4 continued.

5	1	20	REM	3.7	8	2	140	HOH	2.8	11	3	60	AMH	2.8	21	1	10	GRE	5.4
5	1	20	REM	1.5	8	2	140	HOH	1.8	11	3	60	BA5	1.2	21	1	10	GRB	2.3
5	1	20	AME	4.8	8	2	145	SWB	1.1	11	3	60	BAS	1.3	21	1	10	GR8	1.8
5	1	20	REM	2.6	8	3	10	NO	0.0	11	3	60	AMH	1.8	21	1	10	REM	2.9
5	1	20	REM	5.1	8	3	20	NO	0.0	11	3	60	AMH	3.5	21	1	10	GRB	7.2
5	1	20	REM	4.8	8	3	30	NO	0.0	11	3	60	AMK	2.5	21	1	20	GRB	2.3
5	1	20	REM	4.6	8	3	40	no	0.0	11	3	60	AMH	1.4	21	1	20	REM	1.1
5	1	20	REM	2.8	8	3	50	no	0.0	11	3	60	WHA	2.2	21	1	20	CRB	4.9
5	1	20	REM	4.0	8	3	60	no	0.0	11	3	60	AMH	1.8	21	1	20	OUA	2.0
5	1	20	REM	2.6	8	3	70	YEB	1.4	11	3	60	AMH	2.8	21	1	20	OUA	2.8
5	1	20	REM	1.5	8	3	70	YEB	1.0	11	3	60	AMH	2.5	21	1	20	OUA	2.2
5	1	20	OUA	12.2	8	3	80	NO	0.0	11	3	60	AMH	2.1	21	1	20	GRB	5.0
5	1	20	REM	1.7	8	3	90	no	0.0	11	3	60	AMH	1.9	21	1	20	CUA	1.9
5	1	20	REM	2.2	8	3	100	no	0.0	11	3	60	AMH	2.2	21	1	20	OUA	1.7
5	1	20	REM	1.5	8	3	110	NO	0.0	11	3	60	SUM	1.8	21	1	20	OUA	2.2
5	1	20	REM	9.0	8	3	120	YEB	1.0	11	3	60	AMH	2.1	21	1	20	GR8	5.0
5	1	20	REM	1.4	8	3	120	YEB	1.0	11	3	60	AMH	2.3	21	1	20	GRE	2.8
5	1	20	REM	4.7	8	3	120	YEB	1.0	11	3	60	A.MH	1.8	21	1	20	REM	1.6
5	1	20	REM	1.4	8	3	120	YEB	1.0	11	3	60	SUM	4.1	21	1	20	GRB	2.8
5	1	20	GRA	3.0	8	3	130	AMB	1.1	11	3	60	AMH	2.6	21	1	20	REM	1.4
5	1	20	REM	1.2	B	3	130	YEB	1.2	11	3	60	AMH	1.1	21	1	20	REM	1.2
5	1	20	REM	2.2	8	3	140	AMB	1.0	11	3	60	SUM	4.8	21	1	20	REM	2.5
5	1	20	REM	1.2	8	3	140	AMS	1.0	11	3	60	AMH	1.8	21	1	20	REM	1.9
5	1	20	REM	2.7	B	3	140	AMB	1.1	11	3	60	AMH	1.4	21	1	20	GRB	2.4
5	1	20	REM	1.1	8	4	10	SWB	1.9	11	3	60	AMH	2.2	21	1	20	REM	1.5
5	1	20	OUA	11.2	8	4	10	PAB	2.6	11	3	60	SHH	1.0	21	1	20	REM	2.2
5	1	20	AME	4.3	8	4	10	SWB	1.3	11	3	60	SUM	3.7	21	1	20	GRE	2.5
5	1	20	GRA	1.6	8	4	10	SWB	1.7	11	3	60	AMH	3.0	21	1	20	GRE	3.5
5	1	20	REM	1.1	8	4	10	SWB	1.5	11	3	60	AMH	2.9	21	1	20	GRE	4.4
5	1	30	REM	1.4	B	4	10	SWB	1.6	11	3	60	SUM	3.5	21	1	20	REM	2.0
5	1	30	AME	1.3	8	4	10	SWB	2.2	11	3	60	AMH	2.7	21	1	20	DUA	4.2
5	1	30	REM	1.7	8	4	10	SWB	3.4	11	3	60	SUM	4.8	21	1	20	GR8	1.8
5	1	30	REM	1.2	8	4	10	SWB	1.2	11	3	60	SUM	2.2	21	1	20	SCP	1.1
5	1	30	AME	1.3	8	4	10	SWB	1.0	11	3	60	SUM	1.4	21	1	20	REM	1.5
5	1	30	REM	1.4	B	4	10	SWB	3.0	11	3	60	Sum	2.0	21	1	20	SCP	1.3
5	1	30	ouf	2.0	8	4	10	SWB	1.2	11	3	60	SUM	4.3	21	1	20	GRE	1.8
5	1	30	REM	1.5	8	4	10	SWB	1.1	11	3	60	AMH	2.8	21	1	20	REM	1.0
5	t	30	QUA	1.7	8	4	10	SWB	2.4	11	3	60	AMH	2.8	21	1	20	SHE	2.4
5	1	30	Qua	1.8	8	4	10	SWB	1.3	11	3	60	BAS	2.8	21	1	20	REM	1.2
5	1	30	OUA	1.5	B	4	10	PAB	1.5	11	3	60	SUN	4.2	21	t	20	GRE	2.5
5	1	30	REM	1.5	8	4	10	SWB	1.8	11	3	60	AMH	2.2	21	1	20	OUA	2.8
5	1	30	GRA	1.3	8	4	10	SWB	1.1	11	3	60	AMH	2.5	21	1	20	REM	2.2
5	1	30	REM	1.6	8	4	10	SWB	1.0	11	3	60	AMH	1.8	21	1	20	SCP	1.3
5	1	30	QUA	2.1	8	4	10	SWB	1.2	11	3	60	SUN	2.8	21	1	20	GR8	2.1
5	1	30	REM	2.4	8	4	10	SWB	1.4	11	3	60	SUM	4.7	21	1	20	REM	1.1
5	1	30	OUA	1.4	8	4	10	SWB	2.2	11	3	60	AMH	2.5	21	1	20	OUA	2.1
5	1	30	UHA	1.1	8	4	10	5WB	1.2	11	3	60	AMH	2.8	21	1	20	SCP	2.1
5	1	30	OUA	2.1	8	4	10	SWB	2.7	11	3	60	AMH	2.4	21	1	20	REM	1.6
5	1	30	AME	1.5	8	4	10	REO	1.1	11	3	60	WHA	1.3	21	1	20	REM	1.2
5	1	30	REM	1.2	8	4	10	SUB	1.7	11	3	60	AMH	2.5	21	1	20	GRB	2.5
5	1	30	UHA	1.4	8	4	10	SUB	1.7	11	3	60	BAS	4.8	21	1	30	GRB	2.0
5	1	30	REM	1.1	8	4	10	PAB	1.6	11	3	60	AMH	2.2	21	1	30	ONA	1.5
5	1	30	AME	1.9	8	4	10	SW8	1.8	11	3	60	AMH	1.6	21	1	30	GRB	2.5
5	1	30	REm	1.9	8	4	10	SWB	1.7	11	3	60	AMH	1.8	21	1	30	REM	1.1

Appendix Table 4 continued.

\$	P	SP	SPP	HT	S	p	sp	SPP	HT	5	P	SP	SPP	Hf	s	P	SP SPP	HT
				- m -					-m.					- m -				m
5	1	30	hHa	2.0	8	4	10	Pab	1.8	11	3	60	AMM	1.6	21	1	30 OUA	2.0
5	1	30	GRA	1.3	8	4	10	SWB	2.0	11	3	60	AMM	1.8	21	1	30 OUA	3.0
5	1	30	AME	1.3	8	4	10	54B	2.0	11	3	60	REO	2.6	21	1	30 GRB	3.3
5	1	30	REM	1.1	8	4	10	Sub	1.5	11	3	60	АМН	2.8	21	1	30 GRB	2.4
5	1	30	WHA	1.6	8	4	10	Swb	2.5	11	3	60	sum	2.7	21	1	30 GRB	2.1
5	1	30	REm	1.2	-	4	10	SWB	1.8	11	3	60	Sum	1.3	21	1	30 OUA	2.3
5	1	30	ame	1.1	8	4	10	SWE	1.7	11	3	70	NWC	4.0	21	1	30 dua	1.6
5	1	30	dua	3.3	8	4	10	5we	1.0	11	3	70	АМн	1.2	21	1	30 OUM	1.2
5	1	30	WHA	1.6	8	4	10	sub	2.5	11	3	70	Sum	1.3	21	1	30 scP	1.7
5	1	30	rem	1.2	8	4	10	SWB	2.3	11	3	70	AMh	1.3	21	1	30 OUM	2.0
5	1	30	ame	1.9	8	4	10	Pab	1.0	11	3	70	AMh	2.2	21	1	30 tRE	2.0
5	1	30	REM	1.1	8	4	10	Swi	1.7	11	3	70	WHa	2.4	21	1	30 OUA	2.8
5	1	30	REM	9.5	8	4	10	Pag	1.0	11	3	70	Sum	2.8	21	1	30 OUA	2.8
5	1	30	oun	2.2	8	4	10	Swe	1.2	11	3	70	WHA	1.4	21	1	30 OUA	2.7
5	1	30	REM	1.5	8	4	10	Sus	1.3	11	3	70	AMn	1.9	21	1	30 GRE	2.4
5	1	30	GRA	1.3	-	4	10	SWB	1.6	11	3	70	SUM	1.2	21	1	30 CRB	2.1
5	1	30	UHA	1.4	8	4	10	sub	1.3	11	3	70	AMM	2.2	21	1	30 REM	1.5
5	1	40	oua	ใ. 7	-	4	10	SWB	1.8	11	3	70	sum	1.0	21	1	30 GRB	3.3
5	1	40	WHA	2.3	8	4	10	SWB	1.6	11	3	70	Amh	1.6	21	1	30 dua	1.2
5	1	40	WHA	1.5	8	4	10	SHB	1.8	11	3	70	Sum	2.2	21	1	30 GRE	2.2
5	1	40	WHA	1.6	8	4	10	SWB	2.6	11	3	70	NWC	1.3	21	1	30 crg	4.0
5	1	40	REM	1.5	8	4	10	SWB	1.3	11	3	70	Sum	2.1	21	1	30 CUA	1.9
5	1	40	GRA	1.5	8	4	10	SWB	2.7	11	3	70	AMH	1.7	21	1	30 GRE	2.1
5	1	40	Wha	1.4	8	4	10	SWB	2.0	11	3	70	AMH	1.5	21	1	30 OUA	1.9
5	1	40	REM	1.3	8	4	10	sub	1.1	11	3	70	sum	1.3	21	1	30 GRE	2.3
5	1	40	WHa	1.7	8	4	10	swb	1.5	11	3	70	amı	2.3	21	1	30 cre	1.7
5	1	40	WHA	1.5	8	4	10	Sw	1.7	11	3	70	WHA	1.8	21	1	30 REM	1.2
5	1	40	WHa	1.1	8	4	10	Sw8	1.8	11	3	70	SHH	3.0	21	1	30 GRB	3.1
5	1	40	REM	2.2	8	4	10	568	1.2	11	3	70	AMH	1.7	21	1	30 oua	1.2
5	1	40	WHa	2.1	8	4	10	SHE	1.0	11	3	70	CHI	1.6	21	1	30 CRB	1.6
5	1	40	WHA	1.6	8	4	10	PAB	1.4	11	3	70	AMH	2.3	21	1	30 GRE	1.8
5	1	40	UHa	2.1	8	4	10	SWB	1.5	11	3	70	CH I	2.4	21	1	30 OUA	1.3
5	1	40	REM	1.8	8	4	10	SWB	1.4	11	3	70	AMh	1.7	21	1	30 CRB	3.8
5	1	40	WHA	2.1	8	4	10	SU8	2.7	11	3	70	CHI	4.0	21	1	30 GrB	2.0
5	1	40		1.6	8	4	20		1.2	11	3	70	hha	2.6	21	1	40 OUA	2.6
5	1	40	WHa	2.1	8	4	20	PAB	1.1	11	3	70	Hha	1.8	21	1	40 GRE	3.8
5	1	40	REm	1.2	8	4	20	PAB	1.0	11	3	70	UHA	2.0	21	1	40 OUA	4.0
5	1	40	WHA	1.3	8	4	20	SWB	1.0	11	3	70	CH	3.0	21	1	40 crs	3.2
5	1	40	GRA	1.5	8	4	20	PAB	1.0	11	3	70	AMH	1.9	21	1	40 OUA	1.7
5	1	40	REM	1.2	8	4	30	Sws	1.3	11	3	70	AMH	1.7	21	1	40 OUA	2.5
5	1	40	REM	1.7	8	4	30	REO	1.8	11	3	70	CHI	1.6	21	1	40 OUA	3.3
5	1	40	WHA	2.0	8	4	30	reo	1.3	11	3	70	CHI	3.0	21	1	40 BLC	1.6
5	1	40	GRa	1.8	8	4	30	REO	1.1	11	3	70	CHI	3.6	21	1		3.0
5	1	40	oua	2.9	8	4	30	REM	1.2	11	3	70	АМн	2.3	21	1	40 CuA	1.7
5	1	40	WHA	1.8	8	4	30	Reo	1.5	11	3	70	CHI	1.5	21	1	40 OUA	3.0
5	1	40	WHA	1.6	8	4	40	Sus	1.3	11	3	70	AMH	1.7	21	1	40 CRE	6.8
5	1	40	UHA	3.0	8	4	50	ShB	1.2	11	3	70	AMH	3.1	21	1	40 CRB	2.6
5	1	40	Qua	1.2	8	4	50	blc	1.1	11	3	70	AMH	1.8	21	1	40 Qua	2.3
5	1	40	GRA	1.2	8	4	60	Sus	1.5	11	3	70	CHI	2.3	21	1	40 GRS	2.4
5	1	40	Uha	1.4	8	4	60	REM	1.2	11	3	70	WHA	1.2	21	1	40 OUA	1.7
5	1	40	OUA	2.1	8	4	60	REO	1.1	11	3	70	sum	1.6	21	\#	40 OUA	2.1
5	1	40	UHA	1.8	8	4	60	SWB	1.6	11	3	70	AMM	2.3	21	1	40 OUA	2.6
5	1	40	UHA	1.9	8	4	60	SWB	1.6	11	3	70	AMH	2.3	21	1	40 OUA	5.3
5	1			1.7	8	4	60	Sub	1.8	11	3	70	AMH	2.3	21	1	50	2.2

Appendix table 4 continued.

\$	P	SP SPP	HT	5	P	Sp	SPP	HT	5	p	SP	spp	Ht	5	P	SP SPP	HT
			- m -					- m *					- m -				- m
5	1	40 Wha	1.3	d	4	60	REO	1.4	11	3	70	sum	1.6	21	1	50 SCP	2.1
5	1	50 Wha	1.1	8	4	60	5ub	1.7	11	3	70	AMH	1.7	21	1	50 GRB	2.5
5	1	50 WHA	1.3	8	4	60	BLC	1.5	11	3	70	Sum	1.8	21	1	50 REM	3.0
5	1	50 REO	1.8	8	4	70	Reo	1.2	11	3	70	AMH	1.8	21	1	50 REM	1.2
5	1	50 REM	1.1	8	4	70	reo	1.1	11	3	70	sum	3.8	21	1	50 cra	2.4
5	1	50 REO	1.5	8	4	80	NO	0.0	11	3	70	sum	1.8	21	1	50 eah	1.7
5	1	SO REm	1.6	8	4	90	Amb	1.4	11	3	70	AMH	3.0	21	1	50 REM	1.3
5	1	50 BLC	2.4	8	4	100	REM	1.0	11	3	70	AMK	1.6	21	1	50 SCP	1.7
5	1	50 REO	2.5	8	4	100	HHA	1.0	11	3	70	SUM	1.1	21	1	50 crb	3.6
5	1	50 gra	1.9	8	4	110	no	0.0	11	3	70	AMH	1.4	21	1	50 SCP	1.6
5	1	50 REO	3.1	-	4	120	SWB	1.0	11	3	70	AMH	2.2	21	,	50 OUA	3.0
5	1	50 WHA	1.7	8	4	130	SWB	2.0	11	3	70	AMH	2.4	21	1	50 SCP	4.0
5	1	50 WHA	1.7	8	4	130	SWb	2.3	17	3	70	AMH	2.6	21		50 SCP	3.0
5	1	50 UHA	1.6	8	4	130	AMB	1.0	11	3	70	AMH	1.6	21	1	50 PIC	2.8
5	1	50 Rem	1.0	8	5	10	no	0.0	11	3	70	WHA	3.3	21	1	60 scp	1.6
5	1	50 Gra	2.3	-	5	20	No	0.0	11	3	70	AMH	1.6	21	1	60 BLC	2.2
5	1	50 hHA	1.0	8	5	30	no	0.0	11	3	70	CHJ	2.0	21	1	60 cra	4.7
5	1	50 WHa	4.6	-	5	40	no	0.0	11	3	70	amh	1.5	21	1	60 GRE	4.5
5	1	50 BLC	2.4	8	5	50	no	0.0	11	3	70	AMH	2.7	21	1	60 REM	2.4
5	1	50 WHa	1.4	8	5	60	no	0.0	11	3	70	AMH	1.4	21	1	60 ScP	2.3
5	1	50 BLC	1.8	8	5	70	no	0.0	11	3	70	Sum	1.6	21	1	60 REM	1.7
5	1	50 LaA	1.4	8	5	80	no	0.0	11	3	70	AMH	1.8	21	1	70 SHB	1.8
5	1	50 REO	2.6	-	5	90	no	0.0	11	3	70	sum	2.4	21	1	70 SHB	1.5
5	1	50 GRA	1.9	8	5	100	NO	0.0	11	3	70	sum	1.8	21	1	70 SHB	1.3
5	1	50 WHA	1.7	8	5	110	no	0.0	11	3	70	AMH	1.3	21	1	80 но	0.0
5	1	50 GRA	2.0	8	5	120	no	0.0	11	3	70	sum	1.3	21	1	90 REM	2.3
5	1	50 tra	2.2	8	5	130	eah	1.5	11	3	70	AMH	2.7	21	1	90 REM	1.9
5	1	50 REM	1.9	8	5	130	eat	1.4	11	3	70	NWC	1.7	21	1	90 REM	2.3
5	1	50 REM	1.2	9	1	10	oua	1.3	11	3	70	АM	i.8	21	1	100 OUA	1.8
5	1	50 OUA	2.0	9	1	20		1.2	13	1	10	SIM	1.5	21	1	100 REM	1.7
5	1	50 alc	1.6	9	1	20	reb	1.3	13	1	10	uha	1.0	21	1	100 PIC	2.2
5	1	50 OUA	3.2	9	1	20	Yeb	1.1	13	1	10	Gra	1.3	21	1	100 REM	1.7
5	1	50 Wha	1.5	9	1	20	YEB	1.2	13	1	10	Sim	1.2	21	1	100 REM	1.2
5	1	50 elc	2.1	9	1	20	yeb	1.1	13	1	10	SIM	1.4	21		100 OUA	2.6
5	1	50 LAA	1.8	9	1	20		1.0	13	1	20	WHA	1.1	21	1	100 REM	1.0
5	1	50 Reo	3.1	9	1	20	Yeb	1.0	13	1	20	Gra	1.2	21	1	100 REM	1.6
5	1	50 REM	1.5	9	1	20	YEB	1.5	13	1	20	WHA	1.5	21	1	100 PIC	2.9
5	1	50 REO	1.2	9	1	30	NO	0.0	13	1	20	GRA	2.2	21	1	100 oua	2.4
5	1	50 REM	1.4	9	1	40	AMH	1.2	13	1	20	GRA	1.7	21	1	100 aua	2.3
5	1	50 hha	1.4	9	1	50	NO	0.0	13	1	20	GRA	1.3	21	1	100 REM	2.3
5	1	50 blc	2.3	9	1	60	REM	1.3	13	1	20	HHA	1.1	21	1	110 PIC	1.2
5	1	50 BLC	2.0	9	1	60	REM	1.7	13	1	30	WHA	1.6	21	,	110 OUA	1.8
5	1	50 REM	2.6	9	1	60	REM	2.4	13	1	30	cha	3.9	21	1	110 SCP	1.2
5	1	50 REM	1.4		1	60	REM	1.9	13	1	30	GRA	2.8	21	1	110 GRB	2.6
5	1	50 REM	1.7	9	1	60	REM	1.4	13	1	30	WHA	4.7	21	,	110 PIC	1.2
5	1	50 uha	1.5	9	1	70	sum	2.4	13	1	30	SIM	1.8	21		120 GRB	3.5
5	1	50 aua	1.3	9	1	70	REM	1.8	13	1	30	GRA	3.0	21		130 ScP	1.1
5	1	50 REM	1.1	9	1	80	Sul	1.0	13	1	30	GRA	2.6	21	1	130 ERE	1.2
5	1	50 Oua	1.6	9	1	80	Yeb	1.1	43	1	30	cra	1.2	21	1	130 oun	1.0
5	1	50 REO	3.0	9	1	90	REH	2.1	13	1	30	GRA	3.7	21	1	130 oua	1.4
5	1	50 UHA	1.8	9	1	90	AMH	1.5	13	1	30	GRA	2.4	21	,	140 no	0.0
5	1	50 OUA	1.2	9	1	90	AMH	1.5	13	1	30	GRA	2.7	21		150 BLC	1.0
5	1	50 REO	1.8	9	1	100	NO	0.0	43	1	30	WHA	4.6	21	1	150 REM	1.8
	1		1.8	\bigcirc	\dagger	110	YEB	1.1	13	1		Wha	4.6	21	1	150 REM	1.4

Appendix Table 4 continued.

S	P	\$P	SPP	HT	S	P	SP	SPP	HT	S	P	\$P	SPP	HT	S	P	SP	SPP	HT
				- m -					- m -					- m -					- \quad m
5	1	50	WHA	1.7	9	1	120	no	0.0	13	1	30	GRA	2.8	21	1	150	REM	2.5
5	1	50	REM	2.2	9	1	130	AMH	1.0	13	1	30	WHA	1.4	2	1	150	YEB	1.1
5	1	50	WHA	1.2	9	1	140	AMB	1.5	13	1	30	ННА	2.5	21	1	150	REM	1.3
5	1	50	REO	2.4	9	1	140	AMH	2.1	13	1	30	UHA	2.3	21	1	150	REM	1.2
5	1	50	CRA	1.2	9	1	150	AMH	1.1	13	1	30	WHA	2.4	21	1	150	REM	1.0
5	1	50	UHA	1.3	9	1	150	AMH	1.2	13	1	30	WHA	2.2	21	1	150	REM	1.4
5	1	50	BLC	1.6	9	1	460	AMH	2.0	13	1	30	UHA	4.5	21	1	150	REM	1.0
5	1	50	REM	2.1	9	1	160	AMH	2.6	13	1	40	GRA	2.8	21	1	150	REM	1.3
5	1	50	OUA	1.6	9	1	160	AMH	2.1	13	1	40	GRA	1.2	21	1	150	OUA	6.8
5	1	60	WHA	1.6	9	1	170	WHA	1.5	13	1	40	GRa	3.2	21	1	150	REM	1.5
5	1	60	OUA	1.7	9	1	180	NO	0.0	13	1	40	GRA	2.2	21	1	150	REM	1.0
5	1	60	WHA	1.6	9	1	190	NO	0.0	13	1	40	GRA	2.5	21	1	150	REM	1.2
5	1	60	WHA	1.2	9	1	200	NO	0.0	13	1	40	GRA	2.6	21	1	150	AMB	4.6
5	1	60	OUA	1.9	9	1	210	SUM	1.1	13	1	40	GRA	2.6	21	1	150	REM	1.6
5	\uparrow	60	OUA	1.7	9	1	220	AMB	1.7	13	1	40	Stm	1.5	21	1	150	REM	1.1
5	1	60	GRA	1.9	9	1	230	NO	0.0	13	1	40	CRA	3.1	21	1	150	REM	2.3
5	1	60	WHA	2.2	9	1	240	HOH	4.2	13	1	40	GRA	2.5	21	2	10	NO	0.0
5	1	60	WHA	1.8	9	1	250	HOH	2.4	13	1	40	OUA	1.4	21	2	20	SCP	1.0
5	1	60	WHA	2.3	9	1	250	REM	1.2	13	1	40	GRA	2.4	21	2	30	OUA	1.0
5	1	60	WHA	1.9	9	1	250	HOH	3.9	13	1	40	GRA	2.7	21	2	30	SCP	1.0
5	1	60	WHA	2.3	9	1	250	HOH	2.2	13	1	40	GRA	1.9	21	2	30	SCP	1.2
5	1	60	WHA	1.5	9	1	250	REM	1.5	13	1	40	GRA	1.0	21	2	30	Scp	1.1
5	1	60	LAA	1.4	9	1	250	HOH	2.2	13	1	40	GRA	3.4	21	2	30	SCP	1.0
5	1	60	WHA	2.1	9	1	250	HOH	3.9	13	1	40	GRA	2.0	21	2	40	BLC	2.3
5	1	60	REM	2.0	9	1	250	HOH	1.7	13	1	50	ABU	1.3	21	2	40	BLC	2.2
5	1	60	WHA	1.5	9	1	250	HOH	2.0	13	1	50	ABU	1.6	21	2	40	P1c	1.7
5	1	60	WHA	2.0	9	1	250	HOH	4.7	13	1	50	GRA	1.1	21	2	40	ScP	1.0
5	1	60	WHA	1.8	9	1	250	HOH	1.6	13	1	50	GRA	2.1	21	2	40	PIC	1.3
5	1	60	REM	1.5	9	1	250	HOH	2.0	13	1	50	GRA	1.3	21	2	40	BLC	1.2
5	1	60	WHA	2.2	9	1	250	HOH	2.8	13	1	50	CRA	3.4	21	2	40	REP	1.0
5	1	60	BLC	2.5	9	1	250	HOH	3.2	13	1	50	SIM	1.0	21	2	40	SCP	1.4
5	1	60	REM	1.5	9	1	250	HOH	3.8	13	1	50	B0x	2.2	21	2	40	PIC	1.0
5	1	60	BiH	1.2	9	1	250	HOH	1.4	13	1	50	GRA	2.0	21	2	40	SCP	1.5
5	1	60	WHA	1.2	9	1	250	HOH	4.9	13	1	60	WHA	1.3	21	2	50	BLC	1.3
5	1	60	REM	1.4	9	1	250	HOH	2.0	13	1	60	OUA	2.5	21	2	50	BLC	1.3
5	1	60	GRA	2.1	9	1	250	AMB	7.0	13	1	60	GRA	1.4	21	2	50	PIC	1.3
5	1	60	REM	1.8	9	1	250	Sum	3.2	13	1	60	SIM	1.6	21	2	60	CRB	2.3
5	1	60	UHA	1.5	9	1	250	SUM	1.5	13	1	60	OUA	2.8	21	2	60	GRB	2.3
5	1	60	BIH	1.1	9	1	250	REM	1.2	13	1	60	80x	$t .9$	21	2	70	BLC	1.0
5	1	60	WHA	1.6	9	1	250	HOH	4.1	13	1	60	SIM	1.8	21	2	70	SCP	2.3
5	1	80	REM	1.5	9	1	250	HOH	2.8	13	1	60	CRA	1.4	21	2	70	SCP	1.5
5	1	60	WHA	1.5	9	t	250	HOH	1.4	13	1	70	GRA	1.8	21	2	80	REM	1.3
5	1	60	WHA	1.4	9	1	250	HOM	2.6	13	1	70	WHA	1.3	21	2	80	REM	1.0
5	1	60	CRA	1.9	9	1	250	SUM	2.4	13	1	70	HHA	2.3	21	2	80	REH	2.4
5	1	60	REM	2.2	9	1	250	REM	1.0	13	1	70	OUA	1.4	21	2	80	REM	2.2
5	1	60	WHA	1.7	9	1	250	HOH	1.7	13	1	70	GRA	1.3	21	2	80	REM	2.2
5	1	60	REM	1.3	9	1	250	HOH	1.5	13	1	70	ABU	1.8	21	2	80	REM	2.0
5	1	60	GRA	2.3	9	1	250	HOH	4.2	13	1	70	WHA	1.5	21	2	80	REM	2.3
5	1	60	REM	1.4	9	1	250	HOH	2.0	13	1	70	SIM	2.6	21	2	80	REW	1.0
5	1	60	WHA	2.1	9	1	250	AMB	5.8	13	1	70	WHA	9.7	21	2	80	REM	1.5
5	1	60	QuA	1.2	9	1	250	BLC	2.3	13	1	70	WHA	2.1	21	2	80	REM	2.3
5	1	60	REM	1.9	9	1	250	HOH	4.7	13	1	80	GRA	1.5	21	2	80	REH	1.0
5	1	60	REM	1.3	9	1	250	HOH	1.1	13	1	80	GRA	1.5	21	2	80	REM	2.0
5	1	60	GRA	2.5	9	1	250	HOH	3.0	13	1	80	GRA	1.5	21	2	80	REM	1.5

Appendix Table 4 contimued.

5	P	SP SPP	HT	\$	p	SP SPP	HT	S	P	SP	SPP	HF	S	P	SP	SPP	HT
			$\cdots \mathrm{m} \cdot$				- m					- m -					- ${ }^{\text {m }}$
5	1	60 WHA	1.4	9	1	250 HOH	3.9	13	1	80	GRA	1.3	21	2	80	REM	1.3
5	1	60 Wha	1.3	9	1	250 HOH	1.6	13	1	80	GRA	1.2	21	2	80	REM	1.7
5	1	60 WHA	1.0	9	1	250 HOH	5.8	13	1	87.5	HHA	6.8	21	2	80	REM	1.3
5	1	60 glC	1.3	9	2	10 AMH	10.5	13	1	87.5	Gra	3.8	21	2	80	REM	1.4
5	1	60 OUA	1.1	9	2	10 AMH	12.5	13	1	87.5	GRA	3.9	21	2	80	REM	2.2
5	1	60 WHA	1.6	9	2	10 Sum	3.2	13	1	87.5	GRA	11.0	21	2	80	REM	2.0
5	1	60 REM	1.7	9	2	10 HOH	10.0	13	1	87.5	GRA	3.3	21	2	80	REM	1.0
5	1	60 REM	1.1	9	2	10 AMH	15.0	13	1	87.5	GRA	3.5	21	2	90	SCP	1.3
5	1	60 BLC	1.5	9	2	10 SUM	2.4	13	1	87.5	GRA	3.3	21	2	90	REM	1.3
5	1	60 REM	1.1	9	2	10 HOH	9.5	13	1	87.5	SLE	1.3	21	2	90	BLC	1.0
5	1	60 WHA	1.6	9	2	10 HOH	9.5	13	1	87.5	GRA	3.0	21	2	90	REM	1.0
5	1	60 WHA	1.8	9	2	10 AMH	10.5	13	1	87.5	GRA	4.2	21	2	90	REM	1.8
5	1	60 REM	1.7	9	2	10 SUM	2.9	13	2	10	WHA	1.0	21	2	90	REM	1.0
5	1	60 REM	1.4	9	2	10 SUM	3.6	13	2	10	P1C	1.5	21	2	90	REM	2.1
5	1	70 REM	1.0	9	2	10 HOH	16.5	13	2	10	WHA	1.5	21	2	100	REA	1.0
5	1	70 HHA	2.4	0	2	10 AMH	12.5	13	2	10	GRA	1.4	21	2	100	REM	1.0
5	1	70 GRA	2.4	9	2	10 AMH	9.0	13	2	10	WHA	3.5	21	2	100	REM	2.3
5	1	70 HHA	1.7	9	2	10 HOH	13.2	13	2	10	GRA	1.4	21	2	110	REM	2.0
5	1	70 REM	1.8	9	2	10 HOH	9.5	13	2	20	PIC	2.5	21	2	110	BLC	1.8
5	1	70 REM	1.1	9	2	10 AMH	8.4	13	2	30	WHA	1.3	21	2	120	REM	2.0
5	1	70 UHA	1.6	9	2	10 AMH	14.5	13	2	30	SLE	1.3	21	2	120	REM	1.5
5	1	70 нHa	2.4	9	2	10 HOH	16.0	13	2	30	WHA	1.2	21	2	120	REM	1.7
5	1	70 REM	1.2	9	2	10 HOH	16.0	13	2	30	WHA	1.2	21	2	120	BLC	1.3
5	1	70 UHA	1.7	9	2	10 HOH	3.2	13	2	30	SLE	1.2	21	2	120	REM	2.2
5	1	70 REM	2.1	9	2	10 SUM	14.5	13	2	40	GRA	1.5	21	2	120	BLC	0.1
5	1	70 REM	1.9	9	2	10 SUM	3.6	13	2	50	WHA	1.3	21	2	120	REN	2.0
5	1	70 UHA	2.0	9	2	10 HOH	10.5	43	2	50	PJC	2.5	21	2	130	REM	1.9
5	1	70 REM	2.5	9	2	10 AMH	2.4	13	2	50	BLC	1.1	21	2	130	BLC	1.2
5	1	70 REM	1.6	9	2	10 HOH	16.0	13	2	50	LAA	1.3	21	2	130	PIC	2.4
5	1	70 UHa	2.0	9	2	20 AMH	1.9	13	2	60	WHA	2.8	21	2	130	REM	1.1
5	1	70 HHA	1.3	9	2	20 SUM	4.1	13	2	60	WHA	3.0	21	2	130	REM	2.0
5	1	70 HHA	2.1	9	2	30 AMH	1.2	13	2	60	LAA	2.5	21	2	130	HEM	2.3
5	1	70 UHA	1.6	9	2	30 AMH	1.1	13	2	60	WHA	1.5	21	2	130	REM	2.0
5	1	70 แHA	2.7	9	2	30 AMH	1.5	13	2	70	WHA	2.2	21	2	130	REM	1.7
5	1	70 BLC	1.7	9	2	30 AMH	1.0	13	2	70	HHA	1.2	21	2	130	GRB	3.8
5	1	70 WHA	2.3	9	2	30 AMH	1.0	13	2	70	WHA	1.0	21	2	130	REM	1.6
5	1	B0 GRA	1.8	9	2	30 AMH	1.0	13	2	70	LAA	3.7	21	2	130	REM	2.4
5	1	BO WHA	1.7	9	2	30 AMH	1.1	13	2	70	LAA	2.5	21	2	130	BLC	2.0
5	1	80 WHA	2.2	9	2	40 REO	1.6	13	2	70	LAA	1.0	21	2	140	BLC	1.7
5	1	80 WHA	4.6	9	2	40 AMH	1.0	13	2	80	NO	0.0	21	2	140	REM	1.0
5	1	80 REM	2.6	9	2	40 AMN	1.0	13	2	90	WHA	2.3	21	2	140	PIC	2.3
5	1	80 WHA	3.1	9	2	50 NO	0.0	13	2	90	WHA	1.4	21	2	140	CRB	1.5
5	1	80 WHA	3.3	9	2	60 NO	0.0	13	2	90	LAA	2.3	21	2	140	AEM	1.5
5	1	80 UHA	6.0	9	2	70 No	0.0	13	2	100	LAA	1.1	21	2	140	GR8	1.8
5	1	80 SAS	1.7	9	2	80 NO	0.0	13	2	100	LAA	2.6	21	2	140	PIC	2.2
5	1	80 SAS	2.8	9	2	90 NO	0.0	13	2	100	LAA	3.0	21	2	140	SCP	1.3
5	1	80 gra	4.1	9	2	100 AMH	1.5	14	1	10	NO	0.0	21	2	140	PIC	1.0
5	1	80 WHA	2.1	9	2	100 АНН	2.2	14	1	20	NO	0.0	21	2	140	BLC	1.5
5	1	80 5AS	2.9	9	2	110 OUA	1.2	14	1	30	NO	0.0	21	2	140	GRB	1.6
5	1	80 REM	2.1	9	2	110 AMH	1.8	14	1	40	NO	0.0	21	2	140	PIC	1.1
5	1	BO WHA	4.2	9	2	120 gua	1.3	14	1	50	NO	0.0	21	2	140	BLC	1.3
5	1	80 GRA	2.6	9	2	120 AMH	1.3	14	1	60	\$wo	1.4	21	2	140	SCP	1.4
5	1	80 HHA	3.6	9	2	120 ANH	2.5	14	1	70	NO	0.0	21	2	150	BLC	1.3
5	1	80 WHA	1.6	9	2	120 AMH	1.5	14	1	80	NO	0.0	21	2	150	BLC	1.2

Appendix Table 4 continued.

\$	p	SP	SPP	HT	S	P	SP	SPP	H ${ }^{+}$	S	F	SP	SPP	HI	\$	P	SP	SPP	H
				- m					- m -					- m -					- m -
5	1	80	WHA	1.2	9	2	120	AMH	1.1	14	1	90	NO	0.0	21	2	150	REM	1.6
5	1	80	REM	5.8	9	2	120	AMH	1.2	14	1	100	GRA	2.6	21	2	150	BLC	1.3
5	1	80	ERC	1.5	9	2	120	AMH	2.4	14	1	110	no	0.0	21	2	150	BLC	2.2
5	1	80	WHA	1.5	9	2	120	AMH	1.9	14	1	120	no	0.0	21	2	150	OLC	1.5
5	1	80	UHA	3.2	9	2	120	AMH	2.4	14	1	130	HO	0.0	21	2	150	BLC	1.8
5	1	80	GRA	2.7	9	2	120	EAH	1.6	14	1	140	NO	0.0	21	2	150	BLC	1.8
5	1	80	REM	1.8	9	2	120	AMH	1.9	14	1	150	HO	0.0	21	2	150	BLC	1.0
5	1	80	SAS	1.8	9	2	120	AMH	1.1	14	2	10	NO	0.0	21	2	150	BLC	2.3
5	1	80	WHA	1.4	9	2	120	AMH	1.1	14	2	20	no	0.0	21	2	150	REM	1.9
5	1	80	REM	2.7	9	2	120	AMH	1.2	14	2	30	NO	0.0	21	2	150	BLC	1.6
5	1	80	UHA	2.4	9	2	120	OUA	1.1	14	2	40	NO	0.0	21	2	150	6RB	2.0
5	1	80	UHA	2.0	9	2	120	AMH	1.4	14	2	50	N0	0.0	21	2	150	REM	1.0
5	1	80	WHA	3.3	9	2	120	AMH	1.2	14	2	60	NO	0.0	21	2	150	BLC	2.2
5	1	80	GRA	9.6	9	2	130	NO	0.0	14	2	70	NO	0.0	21	2	150	BLC	2.0
5	1	80	REM	1.8	9	2	140	NO	0.0	14	2	80	HO	0.0	21	2	150	BLC	2.5
5	1	80	WHA	1.3	9	2	150	NO	0.0	14	2	90	no	0.0	21	2	150	BLC	1.8
5	1	80	WHA	1.3	9	2	160	ANH	8.6	14	2	100	NO	0.0	21	2	150	REM	2.0
5	1	80	GRA	3.3	9	2	170	AMH	2.0	14	2	110	NO	0.0	21	2	150	BLC	1.0
5	1	80	WHA	2.7	9	2	170	AMH	1.1	14	2	120	no	0.0	21	2	150	BLC	1.5
5	1	80	GRA	4.8	9	2	170	AMH	1.1	14	2	130	no	0.0	21	2	150	BLC	1.3
5	1	80	WHA	2.0	9	2	170	AMH	2.6	14	2	140	NO	0.0	21	2	150	BLC	1.8
5	1	80	GRA	3.3	9	2	170	AMH	2.5	14	2	150	NO	0.0	21	2	150	reb	2.0
5	1	80	GRA	2.6	9	2	170	AMH	2.8	14	2	160	NO	0.0	21	2	150	REM	1.8
5	1	80	WHA	1.3	9	2	170	AMH	2.4	14	2	170	NO	0.0	21	2	150	8LC	1.0
5	1	80	WHA	2.5	9	2	170	AMH	1.3	14	2	175	NO	0.0	21	2	150	REM	1.4
5	1	80	REM	2.0	9	2	170	AMH	1.2	15	1	10	NO	0.0	21	2	150	YEB	1.3
5	1	80	UHA	2.6	9	2	170	AMH	8.3	15	1	20	no	0.0	21	2	150	BLC	1.3
5	1	80	ERC	2.6	9	2	180	NO	0.0	15	1	30	NO	0.0	21	2	150	BLC	1.3
5	1	80	WHA	2.2	9	2	190	no	0.0	15	1	40	NO	0.0	21	2	150	REM	1.3
5	1	80	CR8	11.6	9	2	200	no	0.0	15	1	50	NO	0.0	21	2	150	BLC	1.0
5	1	80	REM	2.7	9	2	210	no	0.0	15	1	60	NO	0.0	21	2	150	BLC	1.4
5	1	80	WHA	3.0	9	2	220	NO	0.0	15	1	65	NO	0.0	21	2	150	BLC	1.0
5	1	80	HHA	2.2	9	2	225	AMH	1.3	15	2	10	Wha	1.0	21	2	150	BLC	1.3
5	1	B0	ERC	2.1	9	2	225	AMH	1.4	15	2	10	REM	3.5	21	2	150	BLC	2.1
5	1	80	GRA	2.7	9	2	225	AMH	3.0	15	2	10	PIC	1.0	21	2	150	BLC	1.3
5	1	80	WHA	2.1	9	2	225	AMH	1.2	15	2	10	REM	1.7	21	2	150	GRE	2.3
5	1	80	GRA	4.3	9	2	225	АМН	1.0	15	2	10	Wha	1.0	21	2	150	BLC	1.0
5	1	80	ERC	2.5	9	5	10	HOH	1.0	15	2	10	REM	2.7	21	2	150	BLC	1.8
5	1	80	GRA	2.7	9	5	10	AMB	2.1	15	2	10	REM	1.6	21	2	150	BLC	1.0
5	2	10	UHA	1.4	9	5	10	WHP	7.1	15	2	10	BLO	1.6	21	2	150	BLC	2.0
5	2	10	SW8	4.2	9	5	10	YEB	2.9	15	2	10	REM	1.5	21	2	450	GRE	2.0
5	2	10	SAS	4.9	9	5	10	AMH	2.1	95	2	10	BLC	1.5	21	2	150	BLC	2.3
5	2	10	SAS	2.8	9	5	10	HOH	1.0	15	2	10	REM	1.8	21	2	150	GRB	4.3
5	2	10	AMH	1.7	9	5	10	AMB	1.8	15	2	10	REM	3.0	21	2	150	BLC	1.8
5	2	10	UHA	2.1	9	5	10	WHP	3.9	15	2	10	REM	3.2	21	2	150	BLC	1.3
5	2	10	BLC	2.8	9	5	10	AMH	5.1	15	2	10	BLC	2.0	21	2	+50	BLC	1.5
5	2	10	HOH	2.2	9	5	10	HOH	2.0	15	2	10	SUM	4.0	21	2	150	BLC	1.9
5	2	10	SAS	3.3	9	5	10	HOH	3.9	15	2	10	REM	2.8	21	2	150	GRB	2.3
5	2	10	SAS	4.4	9	5	10	HOH	1.8	15	2	10	REM	3.7	21	2	150	BLE	1.3
5	2	10	AMH	1.7	9	5	10	AMH	1.4	15	2	10	SUM	2.5	21	2	150	BLC	1.5
5	2	10	GRB	1.9	9	5	10	AMH	5.3	15	2	10	REM	2.6	21	2	150	BLC	2.0
5	2	10	WHA	1.0	9	5	10	WHP	2.9	15	2	10	REM	3.8	21	3	10	REM	3.4
5	2	10	COT	9.4	9	5	10	YEB	1.2	15	2	10	REM	1.3	21	3	10	REM	3.5
5	2	10	BLC	1.8	9	5	10	WHP	4.8	15	2	10	REM	1.8	21	3	10	PIC	4.0

Appendix Table 4 continued.

\$	P	$\mathbf{S P}$	SPP	HT	S	P	SP	P SPP	ItT	\$	p	SP	SPP	HT	\$	p	SP	SPP	H\%
				- m -					- m -					- m -					- m -
5	2	10	SAS	2.4	9	5	10	A AMB	1.6	15	2	10	REM	1.8	21	3	10	REM	1.0
5	2	10	СНО	1.2	9	5	20	NO	0.0	15	2	10	REM	3.4	21	3	10	PIC	6.0
5	2	10	HOH	2.3	9	5	30	NO	0.0	15	2	10	BLC	1.9	21	3	10	BLC	3.2
5	2	10	WHA	1.6	9	5	40	AMH	3.3	15	2	10	REM	1.8	21	3	10	PIC	4.0
5	2	10	HOH	1.7	9	5	40	YEB	1.9	15	2	10	REM	1.5	21	3	10	REM	2.5
5	2	10	GRB	4.4	9	5	40	O AMH	2.5	15	2	10	REM	3.2	21	3	10	REM	1.6
5	2	10	HOH	1.9	9	5	50	YEB	1.0	15	2	10	WHA	1.0	21	3	10	BLC	6.0
5	2	10	HMA	5.6	9	5	60	NO	0.0	15	2	10	REM	3.7	21	3	10	REM	3.1
5	2	10	SAS	3.7	9	5	70	NO	0.0	15	2	10	PJC	2.0	21	3	10	REM	6.0
5	2	10	REM	1.6	9	5	80	YEB	1.1	15	2	10	DUA	1.8	21	3	10	PIC	1.5
5	2	10	CHO	2.2	9	5	80	PIC	1.3	15	2	10	REM	1.3	21	3	10	BLC	5.5
5	2	10	BiH	5.1	9	5	90	WHA	1.5	15	2	10	REM	1.7	21	3	10	PIC	2.3
5	2	10	SWB	5.3	9	5	100	YEB	1.0	15	2	10	REM	2.1	21	3	10	REA	2.2
5	2	10	SWB	4.9	9	5	110	YEB	1.0	15	2	20	BLO	1.3	21	3	10	PIC	6.0
5	2	10	GRB	4.5	9	5	120	SUM	1.3	15	2	30	No	0.0	21	3	10	BLC	6.0
5	2	10	REM	1.4	9	5	120	SHB	1.0	15	2	40	NO	0.0	21	3	10	PIC	4.5
5	2	10	GRE	3.3	9	5	120	REM	1.0	15	2	50	no	0.0	21	3	10	PIC	4.0
5	2	10	BLC	1.2	9	5	120	SHB	1.0	15	2	60	NO	0.0	21	3	10	BLC	3.5
5	2	10	CHO	1.7	9	5	130	SHB	1.1	16	1	10	laa	1.3	21	3	10	BLC	6.0
5	2	10	WHA	2.3	9	5	130	SHB	1.5	16	1	10	oua	1.3	21	3	10	BlC	6.0
5	2	10	GRB	4.8	9	5	130	WHA	1.1	16	1	10	oua	1.3	21	3	10	BLC	3.3
5	2	20	WHA	1.0	9	5	130	BLC	1.2	16	1	10	Qua	1.4	21	3	10	Plc	6.0
5	2	20	SW8	1.3	9	5	130	SH8	1.0	16	1	10	Oua	1.5	21	3	10	REM	2.3
5	2	20	BLC	1.9	9	5	140	REM	1.1	16	1	10	OiJa	1.1	21	3	10	P16	6.0
5	2	20	REM	1.4	9	5	140	REM	1.0	16	1	10	dua	1.1	21	3	10	YEB	2.3
5	2	20	SAS	1.3	9	5	150	REM	1.5	16	1	10	Qua	1.5	21	3	10	REM	3.0
5	2	20	GRB	1.9	9	5	150	REM	1.1	16	1	10	dua	1.0	21	3	10	Yeb	5.0
5	2	20	SWB	2.3	9	5	150	WHA	1.1	16	9	10	Qua	3.7	21	3	10	PIC	1.9
5	2	20	LAA	1.7	9	5	150	AMH	1.0	16	9	10	Qua	1.8	21	3	10	BLC	3.2
5	2	20	SNB	2.3	9	5	150	REM	1.2	16	1	10	OUA	1.0	21	3	10	REM	2.8
5	2	20	AMH	2.5	9	5	150	SCP	1.1	16	1	10	AMB	1.0	21	3	10	PIC	1.3
5	2	20	SAS	1.3	9	5	160	REM	1.0	16	1	10	OUA	1.7	21	3	10	Yeb	4.0
5	2	20	WHA	1.4	9	5	160	SHE	1.4	16	1	10	OUA	1.2	21	3	20	GRB	1.0
5	2	20	SAS	1.8	9	5	160	BLC	2.7	16	1	10	QuA	1.4	21	3	20	PIC	3.0
5	2	20	AMH	1.6	9	5	160	REM	1.3	16	1	10	QUA	1.9	21	3	20	PIC	3.0
5	2	20	SAS	1.3	9	5	160	REM	1.0	16	1	10	LAA	1.2	21	3	20	PIC	3.5
5	2	20	WHA	1.3	9	5	160	WHA	1.4	16	1	10	OUA	1.4	21	3	20	GRB	1.6
5	2	20	SAS	1.2	9	5	160	YEB	1.9	16	1	10	QUA	1.4	21	3	20	REM	2.5
5	2	20	GRB	1.4	9	5	160	REM	1.4	16	1	20	OUA	2.1	21	3	20	PIC	3.5
5	2	20	GRB	3.5	9	5	170	NO	0.0	16	1	20	dua	1.0	21	3	20	REM	2.5
5	2	20	SAS	1.6	9	5	180	WHA	1.4	16	1	20	OUA	1.1	21	3	30	No	0.0
5	2	20	REM	1.0	9	5	180	REM	1.3	16	1	20	QUA	1.0	21	3	40	No	0.0
5	2	20	GRB	4.4	9	5	180	REM	1.0	16	1	20	QuA	1.6	21	3	50	NO	0.0
5	2	20	CRB	4.8	9	5	180	REM	1.7	16	1	20	Qua	1.5	21	3	60	PIC	3.0
5	2	20	BLC	1.3	9	5	190	REM	1.1	16	1	20	qua	2.0	21	3	60	cot	2.0
5	2	20	AMH	1.4	9	5	190	REM	1.5	16	1	20	Qua	1.6	21	3	60	COT	1.9
5	2	20	SAS	1.7	9	5	190	REM	1.5	16	1	20	CUA	2.3	21	3	70	PIC	3.8
5	2	20	GR6	3.5	9	5	190	REM	1.3	16	1	20	cua	1.6	21	3	70	REM	2.0
5	2	20	SAS	1.1	9	5	190	REM	1.4	16	1	20	OUA	1.1	21	3	70	BLC	3.5
5	2	20	SAS	1.1	9	5	200	YEB	2.6	16	1	20	OUA	1.9	21	3	70	PAB	1.8
5	2	20	SAS	1.0	9	5	200	REM	1.5	16	1	20	OUA	1.0	21	3	70	REM	1.5
5	2	20	AMH	2.0	9	5	200	REM	3.0	16	1	30	OUA	1.3	21	3	70	YEB	2.5
5	2	20	GRB	3.6	9	5	200	YEB	2.5	16	1	30	QuA	1.6	21	3	70	BLC	1.3
5	2	20	SAS	2.4	9	5	200	REM	1.3	16	1	30	QUA	2.9	21	3	70	PIC	2.5

Appendix Table 4 cont inued．

s	P	Sp	SPP	Ht	s	P	\＄P	SPP	HT	s	p	SP	SPP	${ }^{\text {H }}$	S	P		SPP	H ${ }^{\text {d }}$
				－m					m					－m					－m－
5	2	20	GRB	4.8	9	5	210	Bll	1.1	16	1	30	Qua	2.2	21	3	70	PAB	1.0
5	2	20	ble	2.2	9	5	220	REM	1.2	16	1	30	aua	2.4	21	3	70	8LC	1.3
5	2	20	AMH	1.6	9	5	225	no	0.0	16	1	30	aua	2.0	21		70	blc	1.7
5	2	20	SAS	2.0	10	2	10	AMH	1.1	16	1	30	oua	2.0	21		70	blc	3.0
5	2	20	日LE	2.2	10	2	10	Амн	4.0	16	1	30	oun	1.6	21	3	70	BLC	2.9
5	2	20	SAS	1.4	10	2	10	AMH	1.3	16	1	30	OUA	2.2	21	3	70	REM	2.0
5	2	20	blc	3.2	10	2	10	AMH	1.3	16	1	30	oua	1.6	21	3	70	PIC	1.7
5	2	20	AMh	2.3	10	2	10	AMH	1.2	16	1	30	OUA	1.7	21	3	70	blC	2.5
5	2	20	SAS	1.1	10	2	10	AMH	2.1	16	1	30	oua	1.7	21	3	70	PIC	2.5
5	2	20	BLC	1.5	10	2	10	AMH	1.2	16	1	30	Qua	1.6	21	3	70	blC	3.0
5	2	20	SA5	1.5	10	2	20	AMH	9.0	16	1	30	OUA	1.6	21	3	70	blC	1.7
5	2	20	SWB	2.0	10	2	20	BLC	1.6	16	1	30	qua	2.9	21	3	70	yeb	3.0
5	2	20	SLb	1.6	10	2	20	AMH	4.5	16	1	30	OUA	1.4	21	3	70	8LC	2.5
5	2	20	blc	1.6	10	2	30	AMH	2.1	16	1	30	oua	2.4	21	3	70	PIC	2.0
5	2	20	SAS	1.8	10	2	30	amh	1.0	16	1	30	oua	2.6	21	3	70	Pab	2.0
5	2	20	Sub	1.1	10	2	40	NO	0.0	16	1	40	QUA	1.8	24	3	70	PIC	2.5
5	2	20	SAS	2.4	10	2	50	no	0.0	16	1	40	Qua	2.0	21	3	70	GRE	4.0
5	2	20	SAS	2.2	10	2	60	NO	0.0	16	1	40	Qua	1.4	21	3	70	REM	2.3
5	2	20	AMH	2.1	10	2	70	no	0.0	16	1	40	Qua	1.3	21	3	70	blc	1.6
5	2	20	анн	1.7	10	2	80	no	0.0	16	1	40	Qua	1.5	21	3	70	YEB	1.5
5	2	20	6R8	1.5	10	2	90	NO	0.0	16	1	40	oua	1.2	21	3	70	PAB	2.6
5	2	20	SWB	4.4	10	2	100	NO	0.0	16	1	40	Qua	1.1	21	3	70	YEB	2.8
5	2	20	SAS	2.1	10	2	110	no	0.0	16	1	40	oun	2.0	21	3	70	YEB	3.7
5	2	20	SAS	1.5	10	2	120	no	0.0	16	1	40	QUA	2.8	21	3	80	GRB	3.0
5	2	20	Swb	1.8	10	2	130	no	0.0	16	1	40	QUA	1.7	21	3	80	日LC	3.0
5	2	20	REM	1.3	10	2	140	oua	1.0	16	1	40	OUA	2.4	21	3	80	YES	1.8
5	2	20	Sus	2.3	10	2	140	AMH	1.0	16	1	40	OUA	1.5	21	3	80	REM	2.0
5	2	20	AMH	2.2	10	2	140	oua	1.0	16	1	40	qua	2.2	21	3	80	REM	2.9
5	2	30	SAS	1.3	10	2	150	OUA	1.0	16	1	40	oua	2.5	21	3	80	res	2.5
5	2	30	REM	1.7	10	2	150	OUA	1.0	16	1	40	Qua	1.3	21	3	80	Sun	1.0
5	2	30	AMH	1.4	10	2	150	OUA	1.0	16	1	40	Qua	1.3	21	3	80	Yeb	3.5
5	2	30	GRB	1.4	10	2	150	OUA	1.0	16	1	50	BLC	1.0	21	3	80	GRB	3.8
5	2	30	WHA	1.0	10	2	150	OUA	1.2	16	1	50	blc	1.5	21	3	80	REM	1.6
5	2	30	oua	1.3	10	2	450	AMm	3.4	16	1	50	BLC	1.0	21	3	80	BLC	1.7
5	2	30	сно	1.7	10	2	160	AMH	1.1	16	1	50	OUA	2.3	21	3	80	GRB	3.5
5	2	30	REM	1.2	10	2	160	Амн	1.0	16	1	50	OUA	2.3	21	3	80	Yeb	2.3
5	2	30	AMH	1.0	10	2	160	oua	1.0	16	1	50	blc	1.5	21	3	80	YEB	3.6
5	2	40	Qua	1.5	10	2	160	AMH	9.0	16	1	50	blc	1.3	21	3	80	Yeb	1.8
5	2	40	Qua	2.4	10	2	160	AMH	1.6	16	1	50	blc	1.2	21	3	80	аmb	2.8
5	2	40	REM	1.5	11	1	10	WHA	6.0	16	1	50	blC	1.2	21	3	80	GRB	2.7
5	2	50	REM	1.0	11	1	10	WHA	4.6	16	1	50	blC	9.1	21	3	80	yeb	3.5
5	2	60	8LC	1.1	11	1	10	WHA	6.0	16	1	50	dua	2.3	21	3	80	GRB	3.0
5	2	60	bin	1.4	11	1	10	WHA	3.5	16	1	50	BLC	1.5	21	3	80	GRB	4.0
5	2	60	WHA	1.1	11	1	10	REM	6.0	16	1	50		2.2	21	3	80	sum	2.5
5	2	60	8LC	1.5	11	1	10	WHA	5.0	16	1	50	blc	1.0	21	3	80	yeb	3.8
5	2	60	She	1.3	11	1	10	WHA	6.0	16	1	50	BLC	1.3	21	3	80	GAB	4.0
5	2	60	WHA	1.1	11	1	10	WHA	6.0	16	1	50	BLC	1.4	21	3	80	REM	1.5
5	2	60	ина	1.0	11	1	10	WHA	6.0	16	1	50	oun	1.4	21	3	80	CRE	4.0
5	2	60	blc	1.1	11	1	10	UHA	5.1	16	1	50	QUA	1.4	21	3	80	REM	2.0
5	2	70	нно	1.1	11	1	10	WHA	6.0	16	1	50	blc	1.0	21	3	80	PIC	2.6
5	2	70	hila	2.0	11	1	10	UHA	6.0	16	1	50	blc	1.0	21	3	80	GRB	3.5
5	2	70	SHB	1.1	11	1	10	Wha	6.0	16	1	50	OUA	2.1	21	3	80	REM	1.9
5	2	70	blc	1.2	11	1	10	WHA	6.0	16	1	50	日lc	1.0	21	3	80	REM	1.5
5	2	70	UHA	2.2	11	1	20	WHA	1.1	16	1	50	blc	1.1	21	3	80	REM	3.5

Appendix Table 4 cont inued.

5	P	SP	SPP	HT	s	P	Sp	SPP	HT	S	P	\$P	SPP	HT	S	P	SP	SPP	HT
				- m -					m -					- m -					- m -
5	2	70	BLC	2.4	11	1	20	WHA	6.0	16	1	50	BLC	1.2	21	3	80	BLC	2.6
5	2	70	GRE	1.5	11	1	20	WHA	1.8	16	1	50	BLC	1.0	21	3	80	sum	2.4
5	2	70	blc	2.2	11	1	20	BLL	6.0	16	1	50	atc	1.0	21	3	80	BLC	1.9
5	2	70	GRE	1.4	11	1	20	BLL	2.0	16	1	50	blc	1.2	21	3	80	REM	2.5
5	2	70	BLC	1.1	11	1	20	bll	3.5	16	1	50	blc	1.7	21	3	80	crb	2.8
5	2	70	BLC	2.1	11	1	20	BLL	1.3	16	1	50	oua	1.0	21	3	80	Gab	4.2
5	2	70	BLC	1.5	11	1	30	8LL	1.0	16	1	50	blc	1.0	21	3	80	GRB	5.0
5	2	70	CRB	1.3	11	1	30	WHA	1.7	16	t	50	blc	1.2	21	3	80	GRB	4.0
5	2	70	BLC	1.0	11	1	30	bll	2.3	16	1	50	blc	1.0	21	3	80	GRB	3.2
5	2	70	GRB	1.2	11	1	30	WHA	1.7	16	1	50	blc	1.6	21	3	80	GRS	2.8
5	2	70	anh	1.3	19	1	30	WHA	1.1	16	1	50	blc	1.3	21	3	80	chs	3.0
5	2	80	WHO	2.3	11	1	30	WHA	1.0	16	1	60	BLC	1.0	21	3	80	GRB	3.8
5	2	80	WHA	4.9	11	1	30	UHA	1.2	16	1	60	blc	1.2	21	3	90	REM	2.7
5	2	80	WHA	2.3	11	1	30	Ste	2.3	16	1	60	blc	1.4	21	3	90	PIC	1.8
5	2	80	Wha	2.7	11	1	40	WHA	1.3	16	1	60	blc	1.2	21	3	90	PIC	1.6
5	2	80	blo	5.6	11	1	40	Wha	1.0	16	1	60	ble	1.1	21	3	90	BLC	2.3
5	2	80	BLC	1.8	11	1	40	Wha	1.0	16	1	60	BLC	1.0	21	3	90	REM	2.7
5	2	80	amh	3.1	17	1	40	BLC	2.9	16	1	60	blc	1.3	21	3	90	REM	2.7
5	2	80	WHA	1.9	11	1	40	blc	1.1	16	1	60	BLC	1.3	21	3	90	PIC	2.5
5	2		Who	6.1	11	1	40	BLL	2.3	16	1	60	BLC	1.4	21	3	90	GRB	2.5
5	2	80	WHA	1.9	11	1	40	НHA	1.5	16	1	60	blc	1.0	21	3	90	blc	3.9
5	2	80	ино	2.1	11	,	40	WHa	1.2	16	1	60	blc	1.4	21	3	90	REM	4.7
5	2	80	CHO	3.0	11	1	40	Wha	1.5	16	1	60	BLLC	1.0	21	3	90	Yeb	3.4
5	2	80	BIH	4.1	11	1	40	WHA	1.3	16	1	60	8LC	1.3	21	3	90	GRB	3.5
5	2	80	REM	3.2	11	1	40	WHA	1.3	16	1	60	BLC	1.3	21	3	90	PIC	3.4
5	2	80	uha	3.2	11	1	40	WHa	1.1	16	1	60	blc	1.2	21	3	90	REM	2.5
5	2		blo	6.3	11	1		UHA	1.1	16	1	60	ble	1.2	21	3	90	BLC	1.5
5	2	80	REM	1.7	11	1	40	WHA	1.3	16	1	60	blc	1.4	21	3	90	PIC	2.0
5	2	80	WHO	5.5	11	1	40	HHA	1.2	16	1	60	BLC	1.2	21	3	90	REM	1.8
5	2	85	AME	1.7	11	1	40	WHA	1.1	16	1	60	8LC	1.0	21	3	90	yeb	2.2
5	2	85	BLC	1.2	11	1	40	WHA	1.4	16	1	60	blc	1.5	21	3	90	PIC	2.0
5	2	85	AMH	9.7	11	1		UHA	1.2	16	1	60	BLC	1.1	21	3	90	REM	2.0
5	2	85	amh	1.4	11	1	40	WHA	1.3	16	1	60	BLC	1.6	21	3	90	reb	1.8
5	2	85	AME	1.7	11	1		blc	2.2	16	1	60	blc	1.0	21	3	90	PIC	1.4
5	2	85	BLC	1.1	11	1	40	WHA	1.2	16	1	60	BLC	1.7	21	3	90	Grb	2.5
5	2	85	AMH	1.7	11	1	40	WHA	1.5	16	1	70	BLC	1.0	21	3	90	yeb	3.0
5	2	85	AMH	1.5	11	1	60	WHA	1.0	16	1	70	BLC	1.4	21	3	90	Yes	1.2
5	2	85	SCO	4.1	11	1	40	BLC	2.3	16	1	70	BLC	1.1	24	3	90	REM	2.3
5	2	85	AME	2.0	11	9		WHA	2.0	16	1	70	BLC	1.3	21	3	90	REM	1.3
5	3	10	Sas	1.3	11	1	40	WHA	1.3	16	1	70	8LC	1.2	21	3	90	bLC	2.5
5	3	10	AMH	1.2	11	1	40	WHA	1.7	16	1	70	日LC	1.1	21	3	90	YEB	2.3
5	3	10	SAS	1.2	11	1	40	WHA	1.3	16	1	75	uha	2.1	21	3	90	PIC	2.4
5	3	10	YEB	1.3	11	\dagger	40	WHA	1.4	16	1	75	BLC	1.3	21	3	90	PIC	1.7
5	3	10	AMH	1.1	11	1			1.5	16	1	75	8LE	1.1	21	3	90		2.5
5	3	10	Yeb	1.0	11	1	40	WHA	1.1	16	1	75	WHA	1.1	21	3	90	PIC	3.0
5	3	10	AMH	1.0	11	1	40	BLC	1.0	16	2	10	REm	1.2	21	3	90	REM	1.4
5	3	10	Yeb	1.0	11	1	40	Wha	1.3	16	2	10	日LE	2.4	21	3	90	YEb	3.0
5	3	10	SAS	1.2	11	1	40	wha	1.3	16	2	20	BlC	2.1	21	3	90	PIC	1.5
5	3	10	YEB	1.6	11	1	40	WHa	1.2	16	2	20	BLC	2.4	21	3	90	BLC	2.2
5	3	10	SAS	2.2	11	1	40	hha	2.1	16	2	20	8LC	1.9	21	3	90	pic	1.5
5	3	10	AMH	1.7	11		40	WHa	1.0	16	2	20	blc	1.9	21	3	90	REM	1.2
5	3	10	SWB	2.5	11	1	40	WHa	1.3	16	2	20	BLC	2.2	21	3	90	PIC	3.0
5	3	10	AMH	1.2	11	1	40	WHa	1.4	16	2	20	8LC	2.2	21	3	90	PIC	1.8
5	3	10	SwB	1.3	11	1	40	BLC	1.9	16	2	20	blC	2.4	21	3	90	blC	1.2

Appendix Table 4 continued．

S	P	SP	SPP	HT	S	P	SP SPP	HT	5	P	SP	SPP	HT	\＄	P	SP	SPP	HT
				－m－				－m－					－m－					－m
5	3	10	BLC	1.3	11	9	40 WHA	1.2	16	2	20	BLC	1.0	21	3	90	REM	3.3
5	3	10	SWB	7.9	11	1	40 WHA	1.0	16	2	20	8LC	1.5	21	3	90	P1C	2.5
5	3	10	BLC	1.2	11	1	40 WHA	1.1	16	2	20	BLC	1.8	21	3	90	REM	2.5
5	3	10	SWB	1.3	19	1	40 UHA	1.2	16	2	20	BLC	1.8	21	3	90	YEB	2.4
5	3	10	SAS	1.0	11	1	40 WHA	1.1	16	2	30	BLC	1.8	21	3	90	REM	2.8
5	3	10	SW日	1.1	11	1	40 WHA	1.1	16	2	30	BLC	1.2	21	3	90	DEM	1.5
5	3	10	5AS	1.0	11	1	40 BLL	1.6	16	2	30	BLC	2.3	21	3	90	PIC	4.1
5	3	10	5W8	1.2	11	1	40 WHA	1.2	16	2	30	BLC	1.7	21	3	90	REM	2.9
5	3	10	\＄AS	1.0	11	1	40 BLC	1.3	16	2	30	BLC	2.5	21	3	90	PIC	3.1
5	3	10	SWB	1.2	11	1	40 GRA	1.8	16	2	30	BLC	2.2	21	3	90	BLC	3.0
5	3	10	SAS	1.6	11	1	40 WHA	1.5	16	2	30	BLC	2.3	21	3	90	P1C	4.2
5	3	10	SWB	1.1	11	1	40 日LC	1.0	16	2	30	BLC	2.1	27	3	90	YE日	3.1
5	3	10	SWB	2.3	11	1	40 WHA	1.2	16	2	30	BLC	1.3	21	3	90	BLC	1.8
5	3	10	SwB	3.1	11	1	40 WHA	1.2	16	2	30	BLC	1.1	21	3	90	PIC	2.3
5	3	10	SWB	1.6	11	1	40 BLC	1.6	16	2	30	BLC	1.5	21	3	90	REM	2.3
5	3	10	SWB	2.7	11	1	40 WHA	1.2	16	2	30	BLC	1.6	21	3	90	REM	2.5
5	3	10	5U日	1.6	11	1	40 WHA	1.0	16	2	40	BLC	1.8	21	3	90	BLC	2.4
5	3	10	SUB	1.4	11	1	40 WHA	1.2	16	2	40	8LC	1.0	21	3	90	BLC	3.0
5	3	10	SAS	1.2	11	1	40 WHA	1.5	16	2	40	WHA	1.3	21	3	90	BLC	1.4
5	3	10	SUB	1.3	11	1	40 WHA	1.4	16	2	40	BLC	1.1	21	3	90	REM	1.3
5	3	10	\＄AS	1.2	11	1	40 WHA	1.3	16	2	50	BLC	1.4	21	3	90	REM	2.6
5	3	10	SW8	1.0	11	1	40 WHA	1.3	16	2	50	BLC	1.0	21	3	90	REM	2.0
5	3	10	YEB	1.1	11	1	40 WHA	1.6	16	2	50	REM	1.0	21	3	90	REM	4.2
5	3	10	SWB	1.0	11	1	40 WHA	1.2	16	2	50	REM	1.4	21	3	90	BLC	3.7
5	3	10	AMH	1.1	11	1	40 HHA	1.1	16	2	50	BLC	2.0	21	3	90	BLC	2.6
5	3	10	8LO	1.2	11	1	40 WHA	1.3	16	2	50	BLC	1.0	21	3	90	REM	2.5
5	3	10	SWB	1.2	11	1	40 BLL	2.1	16	2	50	BLC	1.3	27	3	90	REM	2.3
5	3	10	AMH	1.3	11	1	40 WHA	1.2	16	2	50	BLC	1.0	21	3	90	BLC	3.0
5	3	10	YEB	1.6	14	1	40 UHA	1.0	16	2	50	BLC	1.0	21	3	90	Yeb	3.0
5	3	10	SAS	1.4	19	1	40 UHA	1.3	16	2	50	BLC	1.5	21	3	90	REM	3.0
5	3	10	BLC	1.3	11	\uparrow	40 UHA	1.4	16	2	50	BLC	1.2	21	3	90	REM	1.4
5	3	10	SUM	1.7	11	1	40 LHA	1.3	16	2	50	WHA	1.2	21	3	90	GRS	5.5
5	3	20	SAS	1.8	11	1	40 WHA	1.5	16	2	50	BLC	1.2	21	3	90	REM	2.5
5	3	20	SW8	1.2	11	1	40 UHA	1.3	16	2	50	LHA	1.6	21	3	90	PIC	1.8
5	3	20	SWE	1.8	11	1	40 UHA	1.0	16	2	50	BLC	1.3	21	3	100	REM	1.5
5	3	20	SWB	1.2	11	1	40 WHA	1.1	16	2	50	UHA	1.5	21	3	100	REH	2.3
5	3	20	SNB	1.5	11	1	50 BLL	2.7	16	2	50	BLC	1.4	21	3	100	REM	1.8
5	3	20	CHO	1.2	11	1	50 WHA	1.4	16	2	50	BLC	1.2	21	3	100	REM	2.4
5	3	20	SWB	3.5	11	1	50 WHA	1.3	16	2	50	BLC	1.0	21	3	100	REM	2.5
5	3	20	CHO	3.3	11	1	50 WHA	2.3	16	2	50	HHA	1.0	21	3	100	BLC	2.7
5	3	20	SWB	1.5	11	1	50 WHA	1.1	16	2	60	OUA	1.1	21	3	100	PIC	2.5
5	3	20	CHO	1.8	11	1	50 WHA	1.7	16	2	60	AMH	1.1	21	3	100	Yes	3.0
5	3	20	\＄WB	1.6	11	1	50 WHA	1.3	16	2	60	AMH	1.4	21	3	100	REM	1.5
5	3	20	SWB	1.3	11	1	50 UHA	1.3	16	2	60	AMH	2.9	21	3	100	PIC	1.4
5	3	20	AMH	1.1	11	1	50 WHA	1.4	16	2	60	GRA	1.6	21	3	100	YEB	2.3
5	3	20	SWB	1.3	11	1	50 WHA	1.2	16	2	60	BLC	1.2	21	3	100	REM	2.4
5	3	20	SWB	2.7	11	1	50 WHA	1.2	16	2	60	AMH	1.3	21	3	100	REM	1.3
5	3	20	SWB	1.4	11	1	50 BLL	3.0	16	2	60	REM	2.3	21	3	100	YEB	1.6
5	3	20	SAS	1.0	11	1	50 UHA	1.8	16	2	60	AMH	1.0	21	3	100	REM	2.4
5	3	20	SWB	1.9	11	$?$	50 WHA	2.2	16	2	60	YEB	2.8	21	3	100	YEB	2.5
5	3	20	Sw6	1.8	11	1	50 WHA	1.4	16	2	60	BLC	1.8	21	3	100	PIC	1.5
5	3	20	SWB	2.6	11	1	50 GRA	1.7	16	2	70	HHA	1.1	21	3	100	REM	1.2
5	3	20	AMH	1.7	11	1	50 WHA	1.1	16	2	70	GRA	1.6	21	3	100	YEB	3.0
5	3	20	REM	1.2	11	1	50 WHA	2.5	16	2	70	AMH	2.0	21	3	100	REM	3.5

Appendix Table 4 continued．

5	3	20	swe	1.5	11	\dagger	50	WHA	1.5	16	2	70	AMH	3.7	21	3	100	blc	3.7
5	3	20	REM	1.2	11	1	50	WHA	1.2	16	2	70	AMH	1.9	21	3	100	REM	2.4
5	3	20	SA5	1.1	11	1	So	Wha	1.5	16	2	70	AMH	2.1	21	3	100	REM	2.4
5	3	20	Swe	1.6	11	1	50	WHA	1.2	16	2	70	WHA	1.7	21	3	100	YEB	3.0
5	3	20	swb	1.4	11	1	50	Wha	2.1	16	2	70	amb	1.1	21	3	100	REM	3.0
5	3	20	SUB	1.5	11	1	50	UHA	1.2	16	2	70	AM	1.4	21	3	100	REM	2.5
5	3	20	SAS	1.1	11	1	50	WHA	2.5	16	2	75	AMH	1.0	21	3	100	REN	2.3
5	3	20	SWB	1.1	17	1	50	Wha	2.2	16	3	10	OUA	1.6	21	3	100	REM	2.5
5	3	20	SUB	1.3	11	1	50	WHA	1.3	16	3	10	OUA	1.9	21	3	100	BLC	2.4
5	3	20	SUB	1.4	11	1	50	Wha	1.0	16	3	10	aua	1.7	21	3	100	BLC	3.0
5	3	20	SAS	3.5	11	1	50	WHA	1.6	16	3	10	aua	1.1	21	3	100	REM	1.5
5	3	20	SAS	1.9	11	1	50	wha	1.8	16	3	10	OUA	2.0	21	3	100	YEB	2.5
5	3	20	SAS	1.5	11	1	50	Uha	1.6	16	3	10	oun	2.1	21	3	100	REM	1.3
5	3	20	SH8	1.5	11	1	50	WHA	3.6	16	3	10	Reo	2.4	21	3	100	YE8	2.7
5	3	20	SAS	3.5	11	1	50	UHA	1.5	16	3	20	qua	9.3	21	3	100	REM	2.6
5	3	20	SuB	4.1	11	1	50	WHA	2.0	16	3	30	no	0.0	21	3	100	REM	2.5
5	3	20	SAS	2.3	11	1	50	WHA	1.2	16	3	40	no	0.0	21	3	100	REM	2.7
5	3	20	Sus	1.2	11	1	50	Wha	2.0	16	3	50	no	0.0	21	3	100	yeb	2.2
5	3	20	SAS	4.5	11	1	50	WHA	1.5	16	3	60	Qua	1.4	21	3	100	BLC	3.5
5	3	20	Sas	1.0	11	1	50	WHA	1.4	16	3	60	Qua	2.1	21	3	100	日LC	3.0
5	3	20	54B	1.7	17	1	50	Wha	2.0	16	3	60	OUA	1.8	21	3	100	REM	1.0
5	3	20	548	1.8	11	1	50	WHA	1.2	16	3	60	OUA	1.6	21	3	100	REm	2.0
5	3	20	5 WB	4.4	11	1	50	WHA	1.2	16	3	60	dua	2.2	21	3	100	yeb	2.5
5	3	20	CRB	1.7	11	1	50	WHA	1.3	16	3	60	aua	1.0	21	3	100	REM	3.0
5	3	20	Sus	2.9	11	1	50	WHA	1.7	16	3	60	ouA	1.3	21	3	100	REM	1.5
5	3	20	Sw8	1.0	11	1	50	HHA	2.5	16	3	60	dua	1.7	21	3	100	REM	1.8
5	3	20	Sw	1.1	11	1	50	Wha	2.4	16	3	70	oua	1.8	21	3	100	8LC	2.4
5	3	20	SW	2.0	11	1	50	UHA	1.2	16	3	70	gua	1.5	21	3	100	REM	2.0
5	3	20	AM	2.0	11	1	50	WHA	1.1	16	3	70	OUA	1.4	21	3	100	REM	2.0
5	3	20	Sus	1.2	11	1	50	WHA	1.1	16	3	70	dua	1.4	21	3	100	REM	1.2
5	3	20	SUB	3.5	11	1	50	WHA	2.7	16	3	70	Qua	1.2	21	3	100	YEB	3.0
5	3	20	AMH	1.0	11	1	50	Wha	1.7	16	3	70	rem	1.0	21	3	100	stc	2.5
5	3	20	AMH	1.7	11	1	60	日L	3.5	16	3	70	oua	1.3	21	3	100	REM	2.4
5	3	30	ble	4.6	11	1	60	Wha	1.5	16	3	70	OUA	1.2	21	3	100	PIC	1.5
5	3	30	Sub	1.4	11	1	60	WHA	1.0	16	3	70	Qua	1.7	21	3	100	BLC	1.5
5	3	30	SAS	1.2	11	1	60	WHA	2.5	16	3	70	aua	1.4	21	3	100	REM	2.0
5	3	30	GRB	2.0	11	1	60	WHA	2.3	16	3	70	oua	1.7	21	3	100	REM	2.4
5	3	30	SWB	2.1	11	1	60	WHA	2.5	16	3	70	oua	2.9	21	3	100	BLC	2.0
5	3	30	Sub	1.0	11	1	60	GRa	1.7	16	3	75	oua	1.8	21	3	100	REM	2.4
5	3	30	BLC	2.0	11	1	60	WHA	1.8	16	3	75	OUA	3.0	21	3	100	REM	1.0
5	3	30	SAS	1.4	11	1	60	gra	1.5	16	5	10	WHP	1.8	21	3	100	REM	1.0
5	3	30	5wB	5.2	11	1	60	GRa	2.2	16	5	10	reo	1.6	21	3	100	REM	2.6
5	3	30	Sum	1.4	11	1	60	8LC	1.0	16	5	10	oua	2.0	21	3	100	REM	2.8
5	3	30	BLC	2.0	11	1	60	WHA	1.6	16	5	10	REM	1.3	21	3	100	REM	2.2
5	3	30	5u8	1.7	11	1	60	WHA	2.0	16	5	10	AMa	1.0	21	3	100	PIC	1.0
5	3	30	Sus	2.5	11	1	60	BLC	2.0	16	5	10	WHP	2.3	21	3	100	REM	2.5
5	3	30	SWI	1.5	11	1	60	BLL	3.5	16	5	10	REM	1.6	21	3	100	REM	2.0
5	3	30	日LC	1.2	11	1	60	BLL	3.5	16	5	10	REM	2.2	21	3	100	REM	2.6
5	3	30	SAS	1.2	11	1	60	BLL	2.9	16	5	10	baf	1.8	21		100	YEB	3.0
5	3	30	REM	1.2	11	1	60	UHA	2.0	16	5	10	REM	1.0	21	3	100	PIC	2.3
5	3	30	GRB	1.6	11	1	60	WHA	2.0	16	5	10	Rem	1.8	21		100	YEB	1.3
5	3	30	8LO	1.2	41	1	60	ELI	4.1	16	5	10	Rem	1.2	21	3	110	Yeb	2.5
5	3	30	REM	1.2	11	1	60	WHA	1.2	16	5	10	REM	1.6	21		110	REM	2.3
	3	30	sAS	1.	11	1	60	Wh	1.0	16	5		oun	1.	21	3	110	REM	1.5

Appendix table 4 cont inued.

5	3	30	SAS	1.2	11	1	60	PIC	1.5	16	5	10	OUA	1.3	21	3	110	5HB	3.0
5	3	30	BLO	1.3	11	1	60	WHA	1.9	16	5	10	REM	2.7	21	3	110	BLC	3.3
5	3	30	5AS	1.8	11	1	60	WHA	1.0	16	5	10	OUA	1.1	21	3	110	VEB	2.3
5	3	30	SWE	1.4	11	1	60	WHA	1.6	16	5	10	REM	1.1	21	3	110	PIC	2.3
5	3	30	LHA	1.6	11	1	60	BLL	3.2	16	5	10	SUM	1.8	21	3	110	REM	3.2
5	3	30	SAS	1.8	11	1	60	WHA	3.0	16	5	10	BAF	1.2	21	3	110	REM	2.6
5	3	30	REM	1.0	11	1	60	WHA	1.0	16	5	10	REM	1.0	21	3	110	GRB	2.5
5	3	30	SWB	1.6	11	1	60	GRA	1.5	16	5	10	REM	1.8	21	3	110	PIC	3.0
5	3	30	SAS	1.0	11	1	60	WHA	1.0	16	5	10	OUA	1.9	21	3	110	REM	2.4
5	3	30	REM	1.2	11	1	60	WHA	1.0	16	5	10	WHS	2.1	21	3	110	GRB	3.0
5	3	30	CRB	2.7	11	1	60	WHA	1.0	16	5	10	REM	2.7	21	3	110	GRB	2.5
5	3	30	REM	1.2	11	1	60	WHA	1.0	16	5	10	OUA	1.4	21	3	110	BLC	2.5
5	3	30	SWB	1.9	11	1	60	BLC	2.5	16	5	10	REM	1.6	21	3	110	BLC	2.3
5	3	30	AMH	2.5	11	1	60	CRA	3.0	16	5	10	OUA	1.6	21	3	110	UHA	2.3
5	3	30	5WB	2.5	11	1	60	CRA	2.5	16	5	10	WHP	2.4	21	3	110	REM	3.0
5	3	30	BLO	1.1	11	1	60	WHA	1.0	16	5	10	REM	1.9	21	3	110	BLC	2.4
5	3	30	CHO	1.2	11	1	60	BLC	2.9	16	5	10	WHP	1.3	21	3	110	REM	2.2
5	3	30	BLO	3.6	17	1	60	PIC	2.0	16	5	10	PAB	2.6	21	3	110	BLC	3.0
5	3	30	SAS	1.5	11	1	60	CRA	1.5	16	5	10	REM	2.1	21	3	110	SHB	2.3
5	3	30	REM	1.5	11	1	60	WHA	2.5	16	5	10	WHP	1.6	21	3	110	YEB	1.0
5	3	30	REM	1.2	11	1	60	WHA	4.5	16	5	10	REM	2.1	21	3	110	BLC	3.0
5	3	30	SW8	3.2	11	1	60	WHA	1.0	16	5	10	baf	1.4	21	3	110	SHB	3.2
5	3	30	SWB	1.9	11	1	60	GRA	1.5	16	5	10	OUA	1.0	21	3	110	REM	2.4
5	3	30	REM	1.0	11	1	60	BLC	2.5	16	5	10	WHP	1.8	21	3	110	REM	2.3
5	3	30	SUB	4.1	11	1	60	WHA	1.0	16	5	10	YEB	1.7	21	3	110	日LC	2.5
5	3	30	BLO	1.1	11	1	60	WHA	1.3	16	5	10	OUA	1.6	21	3	110	6LC	3.0
5	3	30	REN	1.1	11	1	60	WHA	1.3	16	5	10	BLC	2.5	21	3	110	REM	2.8
5	3	30	BLC	4.4	11	1	60	WHA	1.0	16	5	10	AMB	2.2	21	3	110	GRB	2.5
5	3	30	SAS	1.2	11	1	60	GRA	1.3	16	5	10	OUA	1.1	21	3	110	GRB	2.5
5	3	40	REM	1.3	11	1	60	WHA	1.3	16	5	10	REM	1.2	21	3	110	YEB	1.1
5	3	40	SAS	2.2	11	1	60	BLC	2.0	16	5	10	WHS	1.1	21	3	\$10	REM	4.0
5	3	40	REM	1.7	11	1	60	BLL	2.1	16	5	10	WHS	1.1	21	3	110	REN	1.8
5	3	40	SAS	2.5	11	1	60	GRA	2.5	16	5	10	REM	2.3	21	3	110	REN	2.0
5	3	40	SAS	2.6	11	1	60	WHA	1.5	16	5	10	WHP	1.5	21	3	110	HHA	2.0
5	3	40	SWB	2.6	11	1	60	UHA	1.5	16	5	10	REM	1.4	21	3	110	GRE	2.3
5	3	40	SAS	2.2	11	1	60	WHA	2.5	16	5	10	REM	1.9	21	3	110	REM	2.1
5	3	40	GRB	3.3	11	1	60	WHA	1.3	16	5	10	HHP	1.1	21	3	110	REM	2.5
5	3	40	SAS	1.6	17	1	60	GRA	2.5	16	5	20	REM	1.4	21	3	110	REM	2.0
5	3	40	SAS	1.4	11	1	60	BlC	2.0	16	5	20	REM	1.1	21	3	110	GRE	2.0
5	3	40	SWB	3.2	11	1	60	WHA	1.0	16	5	20	REM	2.3	21	3	110	BLC	2.0
5	3	40	BLO	1.0	11	1	60	WHA	1.2	16	5	20	SUM	1.1	21	3	110	REM	2.4
5	3	40	GRB	1.2	11	1	60	WHA	1.0	16	5	20	Qua	1.9	21	3	110	GR8	2.5
5	3	40	CHO	1.0	11	1	60	GRA	2.9	16	5	20	REM	2.5	21	3	110	REM	2.1
5	3	40	REM	1.5	11	1	60	WHA	1.3	16	5	20	SUM	1.0	21	3	110	REM	2.4
5	3	40	BLC	1.5	11	1	60	WHA	1.2	16	5	20	REM	2.2	21	3	110	REM	2.4
5	3	40	REM	1.8	11	1	60	GRA	2.4	16	5	20	SUM	2.2	21	3	110	REM	2.1
5	3	40	REM	1.9	11	1	60	GRA	2.0	16	5	20	Qua	1.8	21	3	110	REM	1.8
5	3	40	BLO	1.2	11	1	60	WHA	1.2	16	5	20	REM	4.5	21	3	110	GRE	2.5
5	3	40	SWB	2.1	11	1	60	GRA	1.9	16	5	20	Qua	1.3	21	3	110	BLC	2.5
5	3	40	CRE	1.1	11	1	60	BLC	2.5	16	5	20	REO	1.0	21	3	110	YEb	1.7
5	3	40	BLO	1.9	11	1	60	WHA	1.0	16	5	20	SUM	1.7	2)	3	110	REM	2.7
5	3	40	AWH	2.0	11	1	60	WHA	2.4	16	5	20	GUA	1.4	21	3	110	BLC	2.3
5	3	50	SWB	2.9	11	1	60	日LL	2.8	16	5	20	OUA	1.5	21	3	110	YEB	2.5
5	3	50	5WB	1.2	11	1	60	WHA	2.5	16	5	20	BLC	1.2	21	3	110	GRB	2.5

Appendix table 4 continued.

5	P	SP SPP	HT	s	P	SP SPP	HT	S	P	SP	SPP	Ht	5	P	SP	SPP	HT
			- m -				- m -					-m.					- m -
5	3	50 Sug	2.0	11	1	60 WHA	1.3	16	5	20	REm	2.8	21	3	120	REM	2.6
5	3	50 5wb	1.4	11	1	60 WHA	1.7	16	5	20	REM	1.0	21	3	120	BLC	2.4
5	3	50 SHB	1.0	11	1	60 HHA	1.3	16	5	20	REM	1.4	21	3	120	yeb	2.0
5	3	50 SUS	1.9	11	1	60 WHA	1.6	16	5	20	Qua	1.5	21	3	120	YEB	1.0
5	3	50 5wn	2.7	11	1	60 UHA	1.2	16	5	20	Qua	1.3	21	3	120	Yeb	2.0
5	3	50 BLO	1.2	11	1	60 GRA	1.6	16	5	20	Qua	1.3	21	3	120	REM	2.1
5	3	60 BLO	1.1	11	1	60 UHA	1.8	16	5	20	REM	3.3	21	3	120	SHE	3.0
5	3	60 blo	1.1	11	1	60 BLL	2.0	16	5	20	REM	1.0	21	3	120	REM	2.2
5	3	70 SAS	1.8	11	1	60 UHa	1.0	16	5	20	WHP	1.0	21	3	120	REm	2.5
5	3	70 BLC	1.4	11	1	60 WHA	3.0	16	5	20	REM	1.5	21	3	120	REM	1.5
5	3	70 SAS	1.1	11	1	60 GRA	1.1	16	5	20	Qua	1.3	21	3	120	PIL	1.1
5	,	70 BLC	2.1	11	1	60 PIC	1.9	16	5	20	REM	3.3	21	3	120	Yeb	1.8
5	3	75 SAS	1.2	11	1	60 WHA	1.0	16	5	20	REM	1.5	21	3	120	Yeb	1.9
5	3	75 сHO	6.4	11	1	60 BLL	3.0	16	5	20	REM	1.8	21	3	120	REM	2.3
5	3	75 BLO	2.9	11	1	60 Hha	1.5	16	5	20	REM	1.8	21	3	120	yeb	2.4
5	4	10 REM	3.6	11	1	60 BLC	2.8	16	5	20	UHS	1.7	21	3	120	REM	1.1
5	4	10 SLE	8.6	11	1	60 HHA	1.3	16	5	20	Qua	1.5	21	3	120	REM	2.5
5	4	10 SLE	9.6	11	1	70 CRA	2.4	16	5	20	baf	1.9	21	3	120	Yeb	5.0
5	4	10 REM	4.8	11	1	70 UHA	2.0	16	5	20	REM	2.3	21	3	120	SHB	3.2
5	4	10 REM	5.5	11	1	70 bll	3.5	16	5	20	REH	3.8	21	3	120	YEB	3.5
5	4	10 REM	5.3	11	1	70 bll	3.6	16	5	20	REM	2.5	21	3	120	REM	1.2
5	4	10 SLE	2.5	11	1	70 HHA	1.6	16	5	20	sum	1.8	21	3	120	REM	2.3
5	4	10 SLE	3.5	11	1	70 Wha	1.8	16	5	20	dua	1.7	21	3	120	REM	2.3
5	4	10 REM	7.3	11	1	70 WHA	3.0	16	5	20	REM	1.1	21	3	120	REM	1.5
5	4	20 мо	0.0	11	1	70 BLL	3.0	16	5	20	Qua	1.3	21	3	120	REM	3.0
5	4	30 rem	1.7	11	1	70 WHA	1.2	16	5	20	UHP	1.5	21	3	120	Yeb	2.0
5	4	30 REM	1.8	11	1	70 WHA	1.5	16	5	20	baf	2.0	21	3	120	REM	6.0
5	4	30 REM	1.2	11	1	70 WHA	2.0	16	5	30	SUM	1.6	21	3	120	REM	2.0
5	4	30 REM	2.3	11	1	70 HHA	1.1	16	5	30	aUa	2.6	21	3	120	REM	1.0
5	4	30 REM	1.9	11	1	70 HHA	1.3	16	5	30	oua	1.4	21	3	120	REM	2.3
5	4	30 REM	1.5	11	1	70 WHA	2.0	16	5	30	日LC	1.8	21	3	120	REM	1.0
5	4	30 REM	1.1	11	1	70 BLL	2.0	16	5	30	bLC	2.2	21	3	120	Yeb	2.5
5	4	30 REM	1.1	11	1	70 REO	3.5	16	5	30	REM	1.1	21	3	120	Yeb	2.3
5	4	30 REM	1.6	11	1	70 PIC	1.0	16	5	30	PIC	5.1	21	3	120	YEb	3.0
5	4	30 REM	1.3	11	1	70 BLL	2.5	16	5	30	REM	1.0	21	3	120	REM	2.5
5	4	30 REM	1.3	11	1	70 UHA	1.0	16	5	30	WHP	1.5	21	3	120	REM	1.8
5	4	30 REM	1.8	11	1	70 WHA	1.0	16	5	30	WHP	1.6	21	3	120	REM	1.8
5	4	30 REM	1.7	11	1	70 WHA	1.0	16	5	30	REM	1.5	21	3	120	REM	3.0
5	4	30 REM	1.9	11	1	70 HHA	3.6	16	5	30	REM	1.3	21	3	120	PIC	2.3
5	4	30 REM	1.5	11	1	70 WHA	2.0	16	5	30	Sum	3.1	21	3	120	REM	2.0
5	4	30 REM	1.5	11	1	70 WHA	1.5	16	5	30	oua	2.2	21	3	120	YEB	2.1
5	4	30 REM	1.4	11	1	70 WHA	3.5	16	5	30	OUA	1.3	21	3	120	YEB	1.5
5	4	30 REM	2.2	11	1	70 WHA	2.2	16	5	30	REM	1.4	21	3	120	Yeb	2.0
5	4	30 REH	1.5	11	1	70 UHA	1.0	16	5	30	oua	1.8	21		120	PIC	2.3
5	4	30 REM	1.1	11	1	70 日LC	1.4	16	5	30	REO	1.9	21	3	120	BLC	1.4
5	4	30 REM	2.2	11	1	70 Wha	2.5	16	5	30	OUA	1.0	21	3	120	YEB	2.1
5	4	30 REM	2.1	11	1	70 blc	1.0	16	5	30	REM	3.5	21	3	120	GRE	3.4
5	4	30 REM	2.4	11	1	70 WHA	3.0	16	5	30	WHP	1.6	21	3	120	PIC	1.0
5	4	30 REM	1.3	11	1	70 WHA	1.0	16	5	30	blC	2.2	21	3	120	REM	2.3
5	4	30 REM	2.1	19	1	70 GRA	1.5	96	5	30	REM	2.1	21	3	120	8Lt	2.6
5	4	30 REM	1.6	11	1	70 WHA	1.0	16	5	30	Qua	1.0	21	3	120	REM	2.5
5	4	30 REM	2.4	11	1	70 REO	3.5	16	5	30	REO	2.0	21	3	120	REM	1.3
5	4	30 REm	1.2	11	1	70 BLC	1.1	16	5	30	REM	3.2	21	3	120	REM	3.0
5	4	30 REM	2.2	11	1	70 WHA	2.0	16	5	30	REM	3.5	21	3	120	YEB	2.3

Appendix Table 4 continued.

s	P	SP SPP	HT	5	P	SP SPP	нт	s	p	SP	SPP	HT	s	P	SP	SPP	HT
			- m -				- m					- m -					- m -
5	4	30 REM	2.2	11	1	70 LHA	2.0	16	5	30	oua	1.3	21	3	120	yeb	2.2
5	4	30 REM	2.4	11	1	70 HHA	1.0	16	5	30	REm	2.5	21	3	120	SHB	3.0
5	4	30 REM	1.3	11	1	70 BLL	2.5	16	5	30	oun	3.9	21	3	120	Yeg	2.7
5	4	30 REM	1.1	11	1	70 BLL	3.0	16	5	30	REM	1.8	21	3	120	Shb	3.0
5	4	30 REM	2.1	11	1	70 WHA	1.5	16	5	40	dua	2.0	21	3	120	hem	2.5
5	4	30 REM	3.0	11	1	70 WHA	4.8	16	5	40	REO	2.7	21	3	120	PIC	1.5
5	4	30 REM	1.7	11	1	70 UHA	1.5	16	5	40	P1C	6.0	21	3	120	YEB	3.0
5	4	30 REM	1.1	11	1	70 WHA	1.1	16	5	40	REM	1.4	21	3	120	YEb	2.0
5	4	30 REM	1.5	11	1	70 WHA	1.7	16	5	40	REO	1.6	21	3	120	8LC	2.3
5	4	30 REA	1.4	11	1	70 UHA	2.0	16	5	40	oun	1.9	21	3	120	ShB	2.5
5	4	30 REM	1.1	11	9	70 BLL	3.4	16	5	40	WHS	1.4	21	3	120	REM	1.6
5	4	30 REM	2.2	11	1	70 WHA	1.0	16	5	40	sum	1.2	21	3	120	8LC	2.6
5	4	30 REM	1.9	11	1	70 WHA	1.7	16	5	40	REO	2.0	21	3	120	REM	1.5
5	4	30 REM	1.6	11	1	70 P1C	1.0	16	5	40	REM	2.9	21	3	120	SHB	3.4
5	4	40 REM	1.3	11	1	70 GRA	1.3	16	5	40	oun	1.1	21	3	120	REM	2.3
5	4	40 REM	1.4	11	1	70 HHA	1.3	16	5	40	PIC	4.5	21	3	120	REM	2.4
5	4	40 REM	1.6	11	1	70 WHA	1.7	16	5	40	PIC	5.0	21	3	120	YES	2.3
5	4	40 REM	1.5	11	1	70 BLL	4.0	16	5	40	rem	2.9	21	3	130	BLC	3.5
5	4	40 REM	1.3	11	1	70 hHA	1.5	16	5	40	REM	1.5	21	3	130	Yeb	3.0
5	4	50 NO	0.0	11	1	70 NHA	2.0	16	5	40	oua	1.9	21	3	130	REM	2.4
5	4	60 REM	3.1	11	1	70 WHA	1.3	16	5	40	OUA	1.3	21	3	130	REM	3.0
5	4	70 no	0.0	11	1	70 LHA	1.0	16	5	40	Qua	1.6	21	3	130	REM	1.3
5	4	80 REM	5.1	11	1	70 UHA	2.5	16	5	40	OUA	2.3	21	3	130	REM	2.8
5	5	10 Yep	1.1	11	1	70 WHA	1.3	16	5	40	PIC	2.9	21	3	130	BLC	2.5
5	5	10 Yeb	1.2	11	1	$70 \text { WHA }$	1.3	16	5	40	REM	2.9	21	3	130	REM	4.0
5	5	10 YEB	1.7	11	1	70 GRA	1.0	16	5	40	PIC	2.2	21	3	130	Yeb	3.5
5	5	10 Sw	2.6	11	1	70 WHA	1.3	16	5	40	OUA	1.1	21	3	130	REM	2.5
5	5	10 SW8	2.7	11	1	70 BLL	4.0	16	5	40	Sum	1.4	21	3	130	BLC	2.0
5	5	10 yeb	2.3	11	1	70 WHA	1.3	16	5	40	REM	3.1	21	3	130	YEb	2.5
	5	$10 \mathrm{YEB}$	1.6	11	1	$70 \mathrm{WHA}$	1.3	16	5	40	WHP	1.3	21	3	\$30	SHP	2.5
5	5	10 sum	1.8	11	1	70 HHA	1.3	16	5	40	SUM	1.5	21	3	130	REm	3.0
5	5	10 SH\%	2.4	11	1	70 WHA	3.5	16	5	40		1.7	21	3	130	Yeb	2.5
5	5	10 SWB	1.9	11	1	70 ELL	2.6	16	5	50	REM	1.5	21	3	130	REM	2.4
5	5	10 HOM	2.6	11	1	70 WHA	2.0	16	5	50	PIC	2.1	21	3	130	YE8	2.0
5	5	10 Sws	1.7	11	1	70 WHA	1.0	16	5	50	PIC	2.8	21	3	130	YEB	3.5
5	5	10 Sub	2.5	11	1	70 WHA	1.0	16	5	50	Qua	2.7	21	3	130	REM	1.0
5	5	10 SWB	1.4	11	1	$70 \text { WHA }$	1.3	16	5	50	Sum	1.7	21	3	130	REM	1.8
5	5	10 Sw	1.7	11	1	70 BLL	7.7	16	5	50	WHP	1.1	21	3	130	REM	1.5
5	5	10 Yeb	2.0	11	1	70 WHA	1.3	16	5	50	REM	2.2	21	3	130	REM	1.4
5	5	10 Sub	2.2	11	1	70 WHA	2.1	16	5	50	Sum	1.6	21	3	130	REM	1.5
5	5	10 YEB	1.3	11	1	70 UHA	2.5	16	5	50	REM	1.4	21	3	130	REM	2.0
5	5	10 SWB	2.7	11	1	70 BLL	1.3	16	5	50		1.7	21	3	130	SHE	2.0
5	5	10 Sub	2.6	11	1	70 WHA	1.3	16	5	50	Pic	3.4	21	3	130	PIC	2.3
5	5	10 Swb	1.5	11	1	70 WHA	2.5	16	5	50	REM	1.4	21	3	130	REM	2.3
5	5	10 SWB	1.2	11	1	70 WHA	1.3	16	5	50	PIC	1.8	21	3	130	REM	3.2
5	5	10 CRE	2.4	11	1	70 WHA	1.3	16	5	50	Qua	2.1	21	3	130	REM	3.0
5	5	10 mEM	1.9	11	1	70 GRA	1.5	16	5	50	REM	1.1	21	3	130	YEB	3.0
5	5	10 YEB	1.7	11	1	70 UHA	1.0	16	5	50	PIC	3.5	21	3	130	SHE	2.5
5	5	10 Swb	1.3	11	1	70 HHA	1.0	16	5	50	WHP	1.3	21	3	130	REM	2.0
5	5	10 YEB	3.0	11	1	70 HHA	2.0	16	5	50	REO	1.3	21	3	130	BLC	2.4
5	5	10 SWB	1.1	11	1	70 WHA	1.5	16	5	50	sum	1.6	21	3	130	ShB	2.3
5	5	10 SW8	2.1	11	1	70 WHA	1.1	16	5	50	OUA	1.4	21	3	130	BLC	2.3
5	5	10 SWB	2.4	11	1	70 LHA	4.0	16	5	50	ava	1.0	21	3	130	REM	2.5
5	5	10 BLC	9.6	11	1	70 HHA	1.5	16	5	50	REM	1.6	21	3	130	BLC	5.0

Appendix rable 4 cont inued.

S	P	SP	SpP	HT	S	P	SP	P SPP	HT	S	P	SP	SPP	HT	S	p	SP	SPP	HT
				- m -					- m					- m -					- m -
5	5	10	ABU	2.5	11	1	70	70 WHA	1.3	16	5	50	OUA	1.5	21	3	130	GR8	3.5
5	5	10	SWB	1.0	11	1	70	70 WHA	1.0	76	5	50	REO	1.5	21	3	130	Yeb	2.4
5	5	10	SWB	1.5	11	1	70	70 GRA	2.0	16	5	50	REM	1.2	21	3	130	REM	2.3
5	5	10	YEB	1.1	11	1	70	70 HMA	1.0	16	5	50	OUA	2.1	21	3	130	YEB	2.6
5	5	10	SWB	3.2	11	1	70	O WHA	2.6	16	5	50	PIC	1.7	21	3	130	YE8	2.0
5	5	10	YEB	1.2	11	1	70	0 WHA	2.0	16	5	50	PIC	1.3	21	3	130	REM	3.1
5	5	10	SUM	2.3	11	1	70	O WHA	2.5	16	5	50	PIC	2.7	21	3	130	REM	2.3
5	5	10	YEB	1.0	11	1	70	O WHA	1.7	16	5	50	SUM	1.6	21	3	130	SH8	2.5
5	5	20	YEB	9.6	11	1	70	0 REO	4.5	16	5	50	SUM	1.6	21	3	130	PIC	1.2
5	5	20	YEB	1.8	11	1	70	70 WHA	1.2	16	5	50	REM	1.6	21	3	130	PIC	2.0
5	5	20	YEB	2.3	11	1	70	O Wha	1.0	16	5	50	SUM	2.1	21	3	130	YeB	2.4
5	5	20	SWB	1.7	11	9	70	0 BLL	2.5	16	5	50	SUM	1.6	21	3	130	CRB	4.0
5	5	20	GRB	2.3	11	1	70	0 GRA	1.6	16	5	50	PIC	1.3	21	3	130	PIC	3.0
5	5	20	5WB	1.7	11	1	70	0 WHa	2.8	16	5	50	REM	1.8	21	3	130	REM	1.6
5	5	20	5WB	1.5	17	1	70	0 WHa	1.3	16	5	50	OUA	1.0	21	3	130	REM	2.4
5	5	20	oua	9.3	11	1	70	0 WHA	11.0	16	5	50	P[C	1.9	21	3	130	REM	2.5
5	5	20	reb	1.9	11	1	70	0 UHA	2.5	16	5	50	REM	1.2	21	3	130	VEB	2.4
5	5	20	YEB	1.8	11	1	70	0 GRA	1.8	16	5	60	REM	1.0	21	3	130	BLC	3.0
5	5	20	YEB	1.2	19	1	70	0 WHA	1.5	16	5	60	PIC	1.3	21	3	130	REM	3.5
5	5	20	SWB	1.3	11	1	70	0 GRa	1.6	16	5	60	PIC	1.2	21	3	130	REM	3.4
5	5	20	SW8	1.2	11	1	70	0 WHA	1.3	16	5	60	PIC	1.5	21	3	130	YEB	2.5
5	5	20	SWH	2.5	11	1	70	0 WHA	2.5	16	5	60	PIC	1.2	21	3	130	SHB	2.5
5	5	20	SW*	1.6	11	1	70	0 HHA	1.0	16	5	60	REW	1.1	21	3	130	REM	2.4
5	5	20	SWB	2.0	11	1	70	0 BLC	1.0	16	5	60	PIC	3.1	21	3	130	SHB	4.0
5	5	20	SWB	1.0	11	1	70	0 WHA	1.0	16	5	60	OUA	1.6	21	3	130	REM	2.5
5	5	20	YEB	1.6	14	1	70	O WHA	1.3	16	5	60	PIC	2.6	21	3	130	REM	3.5
5	5	20	SHB	2.2	11	1	70	0 WHA	1.0	16	5	60	REM	1.1	21	3	130	Ye8	3.0
5	5	20	SWB	3.4	11	1	80	0 BLL	1.8	16	5	60	REM	1.1	21	3	130	YEB	3.5
5	5	20	OUA	1.1	11	1	80	0 WHA	1.0	16	5	60	REM	1.3	21	3	130	HHA	2.5
5	5	20	SWB	2.0	11	1	80	Wha	2.5	16	5	60	REM	2.6	21	3	130	YEB	2.5
5	5	20	WHA	1.7	11	1	80	WHA	1.3	16	5	60	PIC	1.2	21	3	130	REM	1.5
5	5	20	5WB	2.3	11	1	80	0 WHA	2.5	16	5	70	BLC	1.8	21	3	130	YEB	3.5
5	5	20	oua	1.5	11	1	80	0 WHA	1.3	16	5	70	PIC	1.3	21	3	130	REM	3.5
5	5	20	\$WB	2.0	11	1	80	0 WHA	1.7	16	5	70	PIC	1.0	21	3	130	YEB	1.6
5	5	20	SWB	1.7	11	1	80	0 WHA	1.0	16	5	70	PIC	1.0	21	3	130	REM	2.4
5	5	20	SWE	2.3	11	1	80	OHA	1.3	16	6	10	OUA	1.5	21	3	130	YEB	3.3
5	5	20	GRB	3.1	11	1	80	REO	1.0	16	6	10	OUA	1.4	21	3	130	YEB	4.0
5	5	20	Yeb	1.3	11	1	80	О LHA	1.6	16	6	10	CUA	1.5	21	3	130	REM	4.0
5	5	20	GRE	3.0	11	1	80	WHA	2.0	16	6	10	ELC	1.0	21	3	130	YEB	2.5
5	5	20	SWB	1.9	11	1	80	0 WHA	1.1	16	6	10	BLC	1.5	21	3	130	REM	3.0
5	5	20	GRB	2.3	11	1	80	0 WHA	1.3	16	6	10	OUA	1.4	21	3	130	SHB	3.5
5	5	20	VEB	1.9	11	1	80	0 BLC	2.5	16	6	10	BLC	7.4	21	3	130	YES	2.5
5	5	20	OUA	7.6	11	1	80	WHA	2.1	16	6	10	QuA	1.3	21	3	140	YEB	1.5
5	5	20	YEB	2.3	11	1	80	0 WHA	3.0	16	6	10	WHA	1.8	21	3	140	BLC	1.0
5	5	20	GRB	2.1	11	1	80	WHA	1.2	16	6	10	qua	3.1	21	3	140	REM	1.8
5	5	20	GRB	2.6	11	1	B0	PIC	2.0	16	6	10	WHA	1.6	21	3	140	BLC	1.7
5	5	20	SWB	1.8	11	1	80	OHA	1.5	16	6	10	OUA	1.2	21	3	140	YEB	1.9
5	5	20	YES	1.8	11	1	80	BLC	1.5	16	6	10	OUA	1.4	21	3	140	Yes	1.8
5	5	20	YEB	1.3	11	1	80	WHA	3.0	16	6	10	Qua	1.4	24	3	140	REM	1.8
5	5	20	SWB	1.0	11	1	80	BLL	6.0	16	6	10	OUA	1.0	27	3	140	REM	1.8
5	5	20	GRB	2.3	11	1	80	- HHA	1.0	16	6	10	BLC	1.0	21	3	140	PIC	6.0
5	5	20	SWB	1.3	11	1	80	8Ll	1.7	16	6	10	qua	1.7	21	3	140	REM	3.0
5	5	20	SWB	1.9	11	1	80	BLL	6.0	16	6	10	QuA	1.2	21	3	140	YEB	3.1
5	5	20	GR8	1.8	11	1	80	BLL	3.0	16	6	10	QUA	1.4	21	3	140	REM	3.4

Appendix Table 4 cont inued.

S	P	SP	SPP	HT	s	P	SP	SPP	нт	S	P	SP	SPP	HJ	5	p	SP SPP	HT
				- m -					- m -					- m -				m
5	5	20	Sus	2.6	19	1	80	wha	2.5	16	6	10	OUA	1.0	21	3	140 REM	1.0
5	5	20	sub	1.2	11	1	80	Wha	5.5	16	6	10	oua	2.1	21	3	140 REM	1.8
5	5	20	YEb	1.7	11	1	80	UHA	2.5	16	6	10	ova	1.4	21	3	140 Rem	1.3
5	5	20	SWE	1.2	11	1	80	WHA	2.3	16	6	10	OUA	1.5	21	3	140 Yes	2.5
5	5	20	YEB	2.5	19	1	80	UHA	1.3	16	6	10	oun	1.6	21	3	140 REM	1.7
5	5	20	5W8	1.5	11	1	80	UHA	1.3	16	6	10	oua	1.0	21	3	140 REM	1.0
5	5	20	SWB	1.6	11	1	80	UHA	1.1	16	6	10	oua	1.2	21	3	140 REM	1.3
5	5	20	Swi	1.4	11	1	80	BLC	3.0	16	6	10	blc	1.0	21	3	140 REM	2.3
5	5	20	SWE	1.0	11	1	80	bll	1.5	16	6	10	oua	1.0	21	3	140 REM	3.0
5	5	20	YEb	1.4	11	1	80	Hha	1.0	16	6	10	HHA	1.4	21	3	140 YEB	2.2
5	5	20	SW日	1.7	11	1	80	LHA	1.0	16	6	10	ova	1.2	21	3	140 REM	1.3
5	5	20	Yeb	1.8	11	1	B0	BLC	2.5	16	6	10	UHA	1.3	21	3	140 REM	1.8
5	5	20	SWB	2.5	11	1	80	WHa	1.0	16	6	10	oua	1.7	21	3	140 REM	1.6
5	5	20	SWB	2.6	11	1	80	WHA	5.0	16	6	10	oua	1.8	21	3	140 REM	2.3
5	5	20	Yeb	2.2	11		80	WHA	2.0	16	6	10	oua	1.2	21	3	140 REM	1.0
5	5	20	SUB	2.2	11	1	80	WHA	1.3	16	6	10	OUA	1.8	21	3	140 REM	2.0
5	5	20	YEB	1.7	11	1	80	WHA	1.5	16	6	10	OUA	1.5	21	3	140 BLC	2.5
5	5	20	Sw8	2.2	11	1	80	WHA	3.5	16	6	10	gua	1.7	21	3	140 ble	2.3
5	5	20	YEb	1.2	11	1	80	HHA	2.0	16	6	10	dua	1.9	21	3	140 REM	1.3
5	5	20	YEB	1.4	11	1	80	WHA	1.0	16	6	10	oua	1.0	21	3	140 REM	3.2
5	5	20	GRE	2.0	11	1	80	blc	5.0	16	6	10	dua	2.0	21	3	140 PIC	3.0
5	5	20	SW6	2.6	11	1	80	WHA	1.1	16	6	10	日LC	1.8	21	3	140 REM	2.5
5	5	20	GR8	1.8	11	1	80	UHA	1.3	16	6	10	Qua	2.0	21	3	140 BLC	1.8
5	5	20	Swe	2.6	11	1	80	WHA	1.5	16	6	10	Qua	1.5	21	3	140 YEB	2.3
5	5	20	Sub	1.8	11	1	80	WHA	2.0	16	6	10	OUA	1.1	21	3	140 YES	2.3
5	5	20	SWB	1.7	11	1	80	WHA	1.0	16	6	10	dua	1.2	21	3	140 REM	1.3
5	5	20	SWB	2.5	11	1	80	WHA	1.3	16	6	10	oua	1.6	21	3	140 REH	1.5
5	5	20	Yeb	1.9	11	1	80	bll	2.0	16	6	10	oua	1.6	21	3	140 REM	3.3
5	5	20	SWB	1.0	11	1	80	WHA	2.5	16	6	10	Oua	4.4	21	3	140 YEB	2.5
5	5	20	SWB	3.7	11	1	80	blt	6.0	16	6	10	dua	1.4	21	3	140 REA	1.8
5	5	20	SWB	1.4	11	1	80	WHA	1.0	16	6	10	oua	1.1	21	3	140 REH	1.8
5	5	20	SWB	1.2	11	1	80	WHA	1.1	16	6	20	blc	1.5	21	3	140 YEB	2.3
5	5	20	GRB	2.0	11	1	80	bll	2.5	16	6	20	aua	2.0	21	3	140 BLC	2.4
5	5	20	Grb	2.2	11	1	80	GRA	1.0	16	6	20	QuA	1.0	21	3	140 BLC	2.6
5	5	20	OUA	1.1	11	1	80	WHA	1.2	16	6	20	8LC	1.8	21	3	140 REM	2.3
5	5	20	SWB	1.5	11	1	80	bLL	1.5	16	6	20	BLC	1.4	21	3	140 REM	2.5
5	5	20	las	1.7	11	1	80	WHA	1.5	16	6	20	BLC	1.9	21	3	140 YEB	1.9
5	5	20	GRE	1.7	11	1	80	blC	1.5	16	6	20	OUA	1.0	21	3	140 REM	2.3
5	5	20	oua	1.0	11	1	80	GRA	1.4	16	6	20	blc	1.1	21	3	140 BLC	2.0
5	5	20	swe	2.8	11	1	80	WHA	1.0	16	6	20	blc	1.2	21	3	140 REM	3.0
5	5	20	SWB	1.2	11	1	80	WHA	2.4	16	6	20	oua	1.7	21	3	140 REM	1.8
5	5	20	Sw	1.7	11	1	80	BLL	1.0	16	6	20	OUA	1.3	21	3	140 REM	1.2
5	5	20	SHB	1.4	11		80	LHA	1.0	16	6	20	BLC	1.4	21	3	140 REM	2.7
5	5	20	SWB	1.4	11	?	80	GRA	3.0	16	6	20	blc	1.8	21	3	140 SHB	1.8
5	5	20	YEB	2.2	11	1	80	WHA	5.0	16	6	20	blc	1.7	21	3	140 REM	1.9
5	5	20	Sw	2.6	11	1	B0	WHA	1.5	16	6	20	oua	2.0	21	3	140 REM	1.2
5	5	20	thb	2.4	11	1	80	WHA	1.0	16	6	20	bic	1.2	21	3	140 REM	2.0
5	5	20	sws	1.3	11	1	80	BLL	2.5	16	6	20	oua	1.8	21	3	140 YEB	2.0
5	5	20	SWB	1.9	11	1	80	WHA	1.3	16	6	20	WHA	1.3	21	3	140 REM	2.0
5	5	20	GRE	2.5	11	1	80	Wha	1.8	16	6	20	oua	1.0	21	3	140 BLC	2.5
5	5	20	yeb	1.0	11	1	80	PIC	5.0	16	6	20	BLC	1.4	21	3	150 REM	2.6
5	5	20	SW8	1.8	11	1	80	WHA	1.7	16	6	30	oua	1.6	21	3	150 BLC	1.7
5	5	20	Yeb	2.6	11	1	90	BLL	6.0	46	6	30	BLC	1.3	21	3	150 REM	1.7
5	5	20	Yeb	1.3	11	1	90	UHA	6.0	16	6	30	WHP	1.6	21	3	150 YES	1.5

Appendix Table 4 continued.

S	P	SP	SPP	HI	5	P	Sp	SPP	HT	S	P	SP	SPP	HT	5	p	SP	SpP	HT
				- m -					- m -					- m -					- m
5	5	20	YEB	3.2	11	1	90	GRA	6.0	16	6	30	BLC	1.3	21	3	150	REM	1.1
5	5	20	SWB	1.2	11	1	90	BLC	1.0	16	6	30	BLC	1.8	21	3	150	REM	1.8
5	5	20	\$WB	1.6	11	1	90	GRA	2.3	16	6	30	BLC	2.0	21	3	150	AMH	6.0
5	5	30	SWB	1.2	11	1	90	BLC	6.0	16	6	30	BLC	2.5	21	3	150	BLC	1.5
5	5	30	YEB	1.5	11	1	90	BLC	1.7	16	6	30	BLC	2.3	21	3	150	BLC	1.5
5	5	30	SWB	1.1	11	1	90	BLL	3.5	16	6	30	OUA	1.3	21	3	150	BLC	2.5
5	5	30	SUB	1.3	11	1	90	GRA	3.0	16	6	30	WHP	1.8	21	3	150	LHA	2.0
5	5	30	SWB	1.8	11	1	90	WHA	6.0	16	6	30	BLC	2.7	21	3	150	REM	1.5
5	5	30	SWB	2.4	11	1	90	BL6	4.8	16	6	30	BLC	1.0	21	3	150	YEB	1.5
5	5	30	GRB	1.5	11	1	90	BLC	5.0	16	6	30	WHP	1.5	21	3	150	REM	1.6
5	5	30	GRB	1.2	11	1	90	WHA	6.0	16	6	30	BLC	1.4	21	3	150	YEB	2.5
5	5	30	GRE	1.2	11	1	90	GRA	3.8	16	6	30	BLC	1.5	21	3	150	YEB	1.3
5	5	30	YEB	1.7	11	1	90	GRA	5.0	16	6	30	OUA	1.3	21	3	150	REM	1.5
5	5	30	SWE	1.1	11	1	90	GRA	2.0	16	6	30	BLC	1.0	21	3	150	REM	1.6
5	5	30	GRB	3.0	11	1	90	GRA	6.0	16	6	40	REM	1.2	21	3	150	BLC	2.1
5	5	30	SWB	2.6	11	1	90	BLC	5.2	16	6	40	WHP	1.1	21	3	150	SU4	1.5
5	5	30	SUB	2.5	11	1	90	BLL	6.0	16	6	40	OUA	1.4	21	3	150	REM	1.0
5	5	30	SWB	1.1	11	1	90	BLL	6.0	16	6	40	BLC	1.2	21	3	150	REM	1.3
5	5	30	SWB	7.0	11	1	90	WHA	6.0	16	6	40	WHP	1.7	21	3	150	WE浐	2.4
5	5	30	YEB	2.3	11	1	90	BLL	6.0	16	6	40	BLC	1.7	21	3	150	YEB	1.0
5	5	30	SWB	1.1	11	1	90	BLC	2.0	16	6	40	BLC	1.7	21	3	150	REM	2.0
5	5	30	GRE	1.1	11	1	90	GRA	1.6	16	6	40	WHP	1.8	21	3	150	YEB	1.3
5	5	30	SWB	2.6	11	1	90	WHA	6.0	16	6	40	BLC	1.1	21	3	150	YEB	1.7
5	5	30	SWE	1.0	11	1	90	WHA	6.0	16	6	40	BLC	1.2	21	3	150	Su4	1.5
5	5	30	SWB	1.5	11	1	90	BLL	3.5	16	6	40	BLC	1.1	21	3	150	YEB	2.1
5	5	40	SWB	1.1	11	1	90	BLC	6.0	16	6	50	OUA	1.1	21	3	$\$ 50$	BLC	1.2
5	5	40	SWB	1.3	11	1	90	BLC	6.0	16	6	50	Qua	1.0	21	3	150	YE8	2.4
5	5	40	SWB	2.2	11	1	90	WHA	1.3	16	6	50	BLC	1.2	21	3	150	YES	2.2
5	5	40	SWB	1.0	11	1	90	WHA	4.7	16	6	50	OUA	1.0	21	3	150	GRE	3.8
5	5	40	SWB	1.0	11	1	90	BLC	6.0	16	6	50	OUA	2.0	24	3	150	REM	2.0
5	5	40	SW8	1.9	11	\dagger	90	BIC	6.0	16	6	60	WHP	2.1	21	3	150	BLC	2.4
5	5	40	SWB	1.2	11	1	90	WHA	1.3	16	6	60	BLC	1.2	21	3	150	SUM	1.0
5	5	40	5WB	1.2	11	1	90	8L.	6.0	16	6	60	NWC	2.1	21	3	150	SUM	1.3
5	5	40	YEB	1.0	11	1	90	GRA	3.0	16	6	60	NWC	1.9	21	3	150	Yeb	2.4
5	5	40	SHB	1.4	11	1	90	GRA	6.0	16	6	60	BLC	1.1	21	3	150	BLC	2.5
5	5	40	YEB	2.0	11	1	90	BLL	6.0	16	6	70	REM	1.3	21	3	150	REN	2.0
5	5	40	SWB	1.4	11	1	90	WHA	1.7	16	6	70	BLC	1.2	21	3	150	SUM	1.7
5	5	40	YEB	1.0	11	1	90	WHA	6.0	16	6	70	NWC	1.6	21	3	150	REM	2.1
5	5	40	YEB	1.1	11	1	90	BLL	6.0	16	6	70	AMB	1.0	21	3	150	BLC	2.8
5	5	40	SHH	1.3	11	1	90	WHA	6.0	16	6	70	REM	1.0	21	3	150	YEB	2.3
5	5	40	Yeb	1.8	11	1	90	BLL	6.0	16	6	70	EAH	1.4	21	3	150	YEB	1.8
5	5	40	YEB	1.6	11	1	90	GRA	5.8	16	6	70	NWC	2.3	21	3	150	YEB	2.5
5	5	40	SWB	2.6	11	1	90	GRA	6.0	16	6	70	REM	2.4	21	3	150	REM	1.7
5	5	40	SHH	2.2	11	2	10	Bla	1.5	16	6	70	NWC	1.2	21	3	150	YEB	2.5
5	5	40	YEB	1.3	11	2	10	BLA	1.3	16	6	70	NWC	1.5	21	3	150	YES	2.8
5	5	40	YEB	1.0	11	2	10	BLA	1.1	16	6	70	NWC	2.2	21	3	150	REM	2.5
5	5	40	SWB	1.6	11	2	10	NWC	1.1	16	6	70	BLC	1.1	21	3	150	BLC	2.0
5	5	40	SWB	2.5	11	2	10	NWC	14.0	16	6	70	NWC	2.2	21	3	150	YE8	1.5
5	5	40	SWB	2.3	11	2	10	BLA	8.2	16	6	70	NWC	2.4	21	3	150	YÉa	1.3
5	5	40	SWB	2.3	11	2	10	BLA	1.2	16	6	70	NWC	1.4	21	3	150	BLC	2.5
5	5	40	SHB	1.1	11	2	10	BLA	2.2	16	6	70	NWC	2.4	21	3	150	BLC	1.3
5	5	40	SWB	2.6	11	2	10	NWC	1.1	16	6	70	REM	1.1	21	3	150	BLC	2.5
5	5	40	SWB	1.2	11	2			1.0	16	6	70	NHC	2.7	21	3	150	BLC	1.0
5	5	40	SWB	2.1	11	2			1.2	16	6	70	BLC	1.2	21	3	150	REM	1.8

Appendix Table 4 continued.

\$	P	SP	SPP	Ht	S	P	SP	SPP	HT	\$	P	SP	SPP	H7	S	P	SP	SPP	HT
				- m -					- m -					- m -					- m
5	5	50	SWB	1.2	11	2	10	BLA	1.0	16	6	70	AME	2.3	21	3	150	REM	2.5
5	5	50	SAS	2.4	11	2	10	SWO	11.6	16	6	70	BLC	1.3	21	3	150	REM	2.3
5	5	50	SWB	1.4	11	2	10	NWC	8.2	17	1	10	no	0.0	21	3	150	YeB	1.3
5	5	50	CRB	3.4	11	2	10	SUM	1.1	17	1	20	NO	0.0	21	3	150	BLC	1.5
5	5	50	SwB	1.0	11	2	10	BLA	1.7	17	1	30	PAB	1.0	21	3	150	REM	2.0
5	5	60	SWB	2.6	11	2	10	NHC	1.6	17	1	30	QuA	1.2	21	3	150	BLC	2.5
5	5	60	SWB	2.1	11	2	10	WWC	1.6	17	1	40	no	0.0	21	3	150	YeB	1.6
5	5	60	SWB	1.0	11	2	10	NWL	11.0	17	1	50	NO	0.0	21	3	150	REM	1.3
5	5	60	SUB	2.5	11	2	10	BLA	1.3	17	1	60	no	0.0	21	3	150	SUM	1.5
5	5	60	GRB	2.7	11	2	10	NWC	1.3	17	1	70	no	0.0	21	3	150	REM	1.4
5	5	60	SWB	2.2	11	2	10	NWC	7.2	17	1	80	NO	0.0	21	3	150	REM	1.4
5	5	60	SWP	1.4	11	2	10	BLA	1.1	17	1	90	no	0.0	27	3	150	REM	2.3
5	5	60	GRB	4.1	11	2	10	BLA	1.0	17	1	100	NO	0.0	21	3	150	REM	1.3
5	5	60	LAA	1.5	11	2	20	SLE	1.2	17	1	110	WHA	1.2	21	3	150	VE8	1.4
5	5	60	SWB	2.7	19	2	20	BLA	2.0	17	1	110	WHA	1.0	21	3	150	YEB	2.0
5	5	60	\$WE	1.0	11	2	20	BLA	1.0	17	1	110	WHA	1.2	21	3	150	SUM	1.1
5	5	60	SWB	2.5	11	2	20	Bla	1.0	17	1	120	no	0.0	21	3	150	BLC	1.8
5	5	60	GRB	2.0	11	2	20	bla	1.4	17	1	130	NO	0.0	29	3	150	REM	1.1
5	5	60	SWB	1.5	11	2	20	Bla	1.3	17	1	140	No	0.0	21	3	150	YEB	2.3
5	5	60	OUA	1.6	11	2	20	BLA	1.0	17	1	150	NO	0.0	21	3	150	REM	1.2
5	5	60	SUB	1.9	11	2	20	bla	1.2	17	1	760	REM	9.6	21	3	150	YEB	2.5
5	5	60	SWB	1.9	11	2	20	bla	1.0	17	1	160	REM	8.8	21	3	150	BLC	2.0
5	5	60	SWB	2.0	11	2	20	BLA	1.1	17	1	160	OUA	2.6	21	3	150	YEB	1.8
5	5	60	SWB	1.5	11	2	20	BLA	1.7	17	1	160	REM	10.6	21	3	150	YEB	1.3
5	5	60	Sw日	1.3	11	2	20	BLA	1.5	17	1	160	WHA	1.5	21	3	150	REM	1.5
5	5	60	5WB	3.1	11	2	20	bla	1.0	17	1	160	WHA	1.0	21	3	150	SUM	1.4
5	5	60	SW8	3.1	11	2	30	BLA	1.0	17	1	160	WHA	2.8	21	3	150	REM	1.7
5	5	60	SWB	1.5	11	2	30	8LA	1.8	17	1	160	REM	3.7	21	3	150	REM	2.4
5	5	60	SWB	2.4	11	2	30	BLA	1.2	17	1	160	REM	4.8	22	1	10	HO	0.0
5	5	60	SWB	1.3	11	2	30	BLA	1.2	17	1	160	REM	3.3	22	1	20	NO	0.0
5	5	60	SWB	1.8	11	2	30	BLA	1.3	17	1	160	OUA	6.8	22	1	30	NO	0.0
5	5	60	SWB	1.8	11	2	30	BLA	1.1	17	1	160	REM	2.3	22	1	40	no	0.0
5	5	60	SWB	1.2	11	2	30	BLA	2.1	17	1	160	OUA	13.8	22	1	50	NO	0.0
5	5	60	SWB	1.3	11	2	30	BLA	1.3	17	1	160	OUA	9.6	22	1	60	NO	0.0
5	5	60	\$WB	1.2	11	2	30	bla	1.2	17	1	160	UHA	6.1	22	1	70	no	0.0
5	5	60	SHB	1.8	11	2	30	BLA	1.1	17	1	160	REM	5.6	22	1	80	ND	0.0
5	5	60	SWB	1.3	11	2	30	BLA	1.2	17	1	165	YEB	6.3	22	1	90	NO	0.0
5	5	60	SWB	1.4	11	2	30	BLA	1.8	17	1	165	REM	1.5	22	1	100	NO	0.0
5	5	60	SWB	2.2	11	2	30	BLA	2.0	17	1	165	REM	1.2	22	1	110	NO	0.0
5	5	70	SW8	1.7	11	2	30	BLA	1.2	17	1	165	REM	9.8	22	1	120	HO	0.0
5	5	70	YEB	1.3	11	2	40	BLA	1.2	17	1	165	YEB	5.3	22	1	130	NO	0.0
5	5	70	SWB	1.9	11	2	40	BLA	1.5	17	1	165	PAB	3.1	22	1	140	SHB	1.9
5	5	70	SWB	2.6	11	2	40	BLA	1.1	17	1	165	PAB	1.8	22	1	150	SHE	2.3
5	5	70	SUB	1.4	11	2	40	BLA	2.0	17	1	165	PAB	6.8	22	1	150	SHE	1.7
5	5	70	SUB	2.4	11	2	40	bla	1.3	17	1	165	REM	3.7	22	1	160	\$ 48	2.5
5	5	70	\$48	2.3	11	2	40	bla	1.1	17	1	165	WHA	3.3	22	1	160	SHB	2.5
5	5	70	SWB	1.7	11	2	40	bla	1.2	17	1	165	REM	15.5	22	1	170	SHB	1.3
5	5	70	GRS	1.0	11	2	40	BLA	1.1	17	1	165	OUA	3.5	22	1	180	NO	0.0
5	5	70	GRE	1.6	11	2	40	Bla	1.2	17	1	165	REN	13.5	22	1	190	NO	0.0
5	5	70	GRB	1.1	11	2	40	BLA	2.3	17	4	165	PAB	6.5	22	1	200	SHB	3.1
5	5	70	GRB	1.9	11	2	50	BLA	1.0	17	1	165	REM	3.7	22	1	200	SHE	3.0
5	5	70	GRB	1.7	11	2	50	BLA	1.1	17	1	165	PAB	1.4	22	1	210	SHB	4.2
5	5	70	GRB	2.3	11	2		BLA	1.1	17	1	165	REM	10.5	22	1	210	SHB	4.6
5				2.6	11	2			2.3	17		165	REM	6.2	22	1	220	REM	9.6

Appendix Table 4 continued.

s	P	SP	SPP	HT	5	P		P SPP	HT	5	P	SP	SPP	HT	S	P	SP	SPP	HT
				- m -					m -					- m -					๓ -
5	5	70	SWB	1.0	11	2	50	bla	1.3	17	1	165	oua	8.8	22	1	220	REM	3.3
5	5	70	GRB	2.3	11	2	50	日LA	2.0	17	1	165	Pab	10.3	22	1	220	ShB	4.4
5	5	70	GRE	2.7	11	2	50	bia	1.1	17	1	165	Yeb	3.6	22	1	220	Rem	4.3
5	5	70	GRB	1.9	11	2	50	BLA	1.2	17	2	10	no	0.0	22	1	220	8LC	1.3
5	5	70	YE8	1.8	11	2	50	bla	1.4	17	2	20	OuA	2.1	22	1	220	REM	4.1
5	5	70	GRE	3.8	11	2	50	bla	1.5	17	2	20	GRB	2.5	22	1	220	REM	5.6
5	5	70	SUB	1.8	11	2	60	bla	1.0	17	2	20	GR8	2.1	22	1	220	SHB	4.7
5	5	70	5UB	1.6	11	2	60	0 BLA	1.0	17	2	20	Pab	1.0	22	1	220	hta	1.9
5	5	70	Sub	2.4	11	2	60	Bla	1.3	17	2	20	PAB	1.1	22	1	220	REM	2.9
5	5	70	SWB	1.1	11	2	60	0 Bla	1.1	17	2	20	PAB	1.4	22	1	220	548	4.8
5	5	70	SWE	1.5	11	2	60	bla	1.5	17	2	20	GRB	1.4	22	1	220	Sh8	4.9
5	5	70	Yeb	2.1	11	2	60	bla	1.5	17	2	30	Pab	1.1	22	1	220	SHB	3.5
5	5	70	REM	1.8	11	2	70	bla	1.3	17	2	30	Pab	1.0	22	2	10	ame	1.1
5	5	70	CRB	1.2	11	2	70	bla	1.3	17	2	40	NO	0.0	22	2	20	no	0.0
5	5	70	SWB	1.7	11	2	70	bla	1.7	17	2	50	PAB	1.3	22	2	30	no	0.0
5	5	70	GRE	2.5	11	2	70	bla	1.5	17	2	50	PIC	1.0	22	2	40	no	0.0
5	5	70	SWB	2.5	11	2	70	bla	1.3	17	2	60	pab	1.3	22	2	50	wha	1.6
5	5	70	CRE	2.6	11	2	70	bla	1.6	17	2	70	no	0.0	22	2	50	AME	3.2
5	5	70	SW8	2.2	11	2	70	bla	1.7	17	2	80	pab	1.2	22	2	60	no	0.0
5	5	70	5WB	2.3	11	2	70	bla	1.3	17	2	90	dua	1.0	22	2	70	WHA	1.0
5	5	70	SAS	1.4	11	2	70	bla	2.3	17	2	100	no	0.0	22	2	80	NO	0.0
5	5	70	swb	1.2	11	2	70	bla	1.6	17	2	110	no	0.0	22	2	90	NO	0.0
5	5	70	SAS	1.9	11	2	70	bla	1.6	17	2	120	No	0.0	22	2	100	GRA	1.1
5	5	70	SWB	1.7	11	2	70	REm	2.8	17	2	130	no	0.0	22	2	100	GRA	1.2
5	5	70	SAS	2.3	11	2	70	bla	2.8	17	2	140	no	0.0	22	2	100	GRA	1.0
5	5	70	SWB	2.3	11	2	70	bla	1.0	17	2	150	REM	8.8	22	2	110	NO	0.0
5	5	70	GRB	1.7	11	2	70	bla	2.0	17	2	150	REM	10.4	22	2	120	HO	0.0
5	5	70	GRB	1.9	11	2	70	日la	2.1	17	2	150	Qua	7.4	22	2	130	no	0.0
5	5	70	5AS	1.7	11	2	70	bla	2.2	17	2	150	REM	7.7	22	2	140	GRA	1.1
5	5	70	sas	1.5	11	2	70	bla	1.5	17	2	150	Pab	3.5	22	2	150	no	0.0
6	1	10	Bas	3.0	11	2	70	bla	1.0	17	2	150	REM	8.1	22	2	160	CRA	1.3
6	1	10	bas	1.2	11	2	70	bla	1.0	17	2	150	oua	9.8	22	2	160	GRa	1.3
6	1	20	AME	14.4	11	2	70	bla	1.6	17	2	150	oua	5.3	22	2	160	GRA	1.5
6	1	30	NO	0.0	11	2	70	bla	2.9	17	2	150	dua	9.5	22	2	160	CRA	1.4
6	1	40	oua	1.8	11	2	80	bla	1.3	17	2	150	Pab	7.4	22	2	160	CRA	1.1
6	1	50	no	0.0	11	2	80	bla	1.1	17	2	150	Pab	4.0	22	2	170	gra	1.0
6	1	60	olua	1.8	11	2	80	bla	1.2	17	2	150	dua	4.8	22	2	170	GRA	2.1
6	1	60	oua	1.6	11	2	80	bla	1.2	17	2	150	QUA	7.3	22	2	180	GRA	1.8
6	1	70	OUA	1.7	11	2	80	bla	1.6	17	2	150	OUA	4.7	22	2	180	GRA	1.1
6	1	70	OUA	1.2	11	2	80	bla	1.4	17	2	150	PAB	7.0	22	2	180	GRA	1.2
6	1	70	ous	1.3	11	2	80	bla	3.4	17	2	150	oua	11.2	22	2	190	но	0.0
6	1	80	oua	1.9	11	2	80	bla	1.3	17	2	150	Pab	1.6	22	2	200	Shh	6.3
6	1	80	oua	1.1	11	2	80	BLA	2.8	17	2	150	Qua	10.0	22	2	200	SHH	5.8
6	1	80	OUA	1.0	11	2	80	bla	1.1	17	2	150	PAB	3.0	22	2	200	REM	2.3
6	9	80	Qua	1.3	11	2	80	bla	2.1	17	2	160	WHA	7.2					
6	1	80	dua	1.6	11	2	80	BLA	2.8	17	2	160	REM	9.0					
6	1	90	OUA	1.1	11	2	80	8LA	1.1	17	2	160	REM	7.1					
6	1	90	WHP	2.0	11	2	80	bla	1.4	17	2	160	REM	7.5					
6	1	100	Qua	1.6	11	2	80	bla	1.2	17	2	160	Qua	8.8					
6	1	100	dua	1.8	11	2	80	bla	1.1	17	2	160	PAB	3.2					
6	1	110	no	0.0	11	2	80	bla	1.6	17	2	160	dua	9.7					
6	1	120	No	0.0	11	2	80	bla	2.5	17	2	160	REM	5.3					
6	1	130	no	0.0	11	2	80	bla	1.1	17	2	160	ova	3.7					
6	1	140	no	0.0	11	2	80	BLA	1.3	17	2	160	PAB	1.4					

Appendix Table 4 continued.

S	P	SP	SPP	HT	5	P	SP	SPP	Hi	S	P	SP	SPP	HT	S	P	SP SPP	HT
				- ${ }^{\text {m - }}$					- m -					- m -				
6	1	150	NO	0.0	11	2	90	BLA	2.1	17	2	160	OUA	1.0				
6	1		H0	0.0	11	2	90	bla	1.0	17	2	160	PAB	6.1				
6	1	170	AME	3.9	19	2		Bla	1.7	17	2	160	WHA	4.6				
6	1	170	WHA	2.8	11	2	90	bla	1.2	17	2	160	PAB	2.7				

a Abbreviations: S .- site, P .-- plot, SP -- subplot (distance of furthest subplot edge from the right-of-way edge [ft'), SPP .- species, and HT -- height. Definitions of abbreviations for species from within the tables are provided in Appendix Table 5.

Individual tree stem data has been archived on the Syracuse University mainframe computer in the HHITEASUVM account under the file name "All9192.pRN". This file will remain archived untit 11/23/96.

Appendix Table 5. Acronyms and common and scientific names of tree species found on the electric transmission line right-of-way plots in 1975, 1991, and 1992. ${ }^{\text {a }}$

Acronymb	Common name	Scientific name
BAF	balsam fir	Abies balsamea (L.) Mill.
Box	boxelder	Acer negundo L.
REM	red maple	Acer rubrum L .
SIM	silver maple	Acer saccharinum 4.
SLM	suger maple	Acer saccharum Marsh.
AIL	ailanthus	Ailanthus oltissima (Mill,) Swingle
SHB	serviceberry ${ }^{\text {c }}$	Amelanchier arborea (Michx. f.) Fern.
YEB	yellow birch	Betula alleghaniensig 8ritton
SW:	sweet birch	Betula lenta L.
PAB	paper birch	Berula papyrifera Marsh.
GR8	gray birch ${ }^{\text {c }}$	Betula populifotia marsh.
AMH	American hornbeam ${ }^{\text {c }}$	Carpinus caroliniana Walt.
BIM	bitterrut hickory	Carya cordiformis (Wangenh.) K. Koch
P1H	pignut hickory	Carya glebra (Mill.) Sweet
SHH	shagbark hickory	Carye pvata (Hill.) K. Koch
AMB	American beech	faqus grandifolie Ehrh.
WHA	white ash	Fraxinus americang L.
BLA	black ash	Fraxinus nigra Marsh.
GRa	green ash	Fraxinus pennsylvanica Marsh.
ABU	butternut	Juglans cinerea L.
BLW	black walnut	Juglans nigra 6.
ERC	eastern redcedar	Juniperus virginiana 4.
YEP	yellow-poplar	Liriodendron tulipifera b.
HOH	eastern hophornbeam ${ }^{\text {c }}$	Ostrya virginiana (Mitl.) K. Koch
HHS	wite spruce	Pices glaucs (Moench) Voss
BLS	black spruce	Pices marisna (Mill.) B.S.P.
RES	red spruce	Picee rubens Sarg.
REP	red pine	Pinus resinose Ait.
WHP	eastern white pine	Pinus strobus L.
SCP	Scotch pine	Pinus sylvestris L.
COT	eastern cottonwood	Populus deltoides Bartr. ex Marsh.
LMA	large-toothed aspen	Pppulus grandidentate Michx.
OUA	quaking aspen	Poputus tremuloides Michx.
PIC	pin cherry ${ }^{\text {c }}$	Prunus pensylvanica t. f.
BLC	black cherry	Prunus serotina Ehrh.
WHO	white oak	Quercus alba L .
540	swamp white oak	Quercus bicolor Willd.
SCO	scarlet oak	Quercus coccinea Muenchh.
CHI	chinkapin oak	Quercus muehlenbergii Engelm.
CHO	chestout oak	Quercus prinus L.
REO	northern red oak	guercus rubra L .
BLO	black oak	Quercus velutina Lem.
BLL	btack locust	Robinia pseudoactacio L.
SAS	sassafras	Sassafres albidun (Nutt.) Nees
NWC	northern white-cedar	Thuja occidentalis 4.
BAS	Americen basswood	Tilia americana L.

Appendix Table 5 cont inued.

Acronym	Common name	Scientific name
EAH	eastern hemlock	Isuga canadensis (L.) Carr.
AME	American elim	Ulmus americana L.
SLE	slippery elm	utmus rubrag Muht.
NO	no species found in subplot	-
a Based on plot meps and accompanying list of trees provided with each site map in ESEERCO's 1975 study final report (ESEERCO, 1977a), Niagara Mohawk Power Corporation's HList of trees to be trimmed, removed, or sprayed" (NMPC, 1989), and the 1991 and 1992 field surveys. Nomenclature follows little (1979).		
b Acronyms were adapted from ESEERCO (1977a).		
c These species are conditionally listed as desirable species by the Niagara MohawkPower Corporation in their "List of small trees and shrubs to be preserved" (NMPC 1989).		

Appendix Table 6. Plot sizes from Study 2.
Site Plot $\overline{\text { Plot sizea }}$
———m $\quad \mathrm{m}$

1	1	47.26	17.23
1	3	48.78	16.46
1	4	48.78	16.46
2	1	30.49	27.44
2	2	45.73	17.53
2	3	24.39	17.38
3	2	36.59	10.98
3	3	36.59	10.98
4	1	22.87	17.68
4	2	22.87	17.68
4	3	30.49	13.72
5	1	24.39	16.62
5	2	25.91	15.40
5	3	22.87	16.46
5	4	24.39	16.31
5	5	21.34	18.14
6	1	54.88	15.24
6	2	82.32	9.76
6	3	82.32	9.76
6	4	82.32	9.76
6	5	82.32	9.76
8	1	42.68	18.60
8	2	44.21	18.60
8	3	42.68	18.90
8	4	39.63	20.73
8	5	39.63	19.21
9	1	76.22	10.67
9	2	68.60	11.89
9	5	68.60	11.89
10	2	48.78	16.77
11	1	27.44	15.24
11	2	27.44	15.24
11	3	21.34	18.29
13	1	26.68	30.49
13	2	30.49	26.68
14	1	45.73	17.68
14	2	53.35	15.24
15	1	19.82	20.43
15	2	18.29	21.34
16	1	22.87	17.68
16	2	22.87	17.68
16	3	22.87	17.68
16	5	21.34	18.90
16	6	21.34	18.90

Appendix Table 6 continued.

		Plot size	
Site Plot	X-axis	Y-axis	
17	1	50.30	16.16
17	2	50.30	16.16
17	3	30.49	13.41
17	4	27.44	14.94
18	3	33.54	24.39
19	1	71.65	11.28
19	2	67.07	12.20
20	1	76.22	10.67
20	2	82.32	10.06
21	1	45.73	17.68
21	2	45.73	17.68
21	3	45.73	17.68
22	1	67.07	12.20
22	2	60.98	13.41

a Distances are expressed along $X-$ and Y-axes. The X-axis values are the distances from edge to edge on a right-of-way between. The Y axis values are the plot lengths along the edges parallel to centerline.

Appendix Table 7. Original vegetation and cost data from the initial clearing atudy -Study $3 .{ }^{\text {a }}$

AREA PLOT	MODE ${ }^{\text {b }}$	METHOD ${ }^{\text {C }}$	D82	D83	UD82	UD83	STMSP83	PERCSPT	LAB83	EQU83	MAT83
			stems ha-1					8	dollars ha-1		
126 2B	SC	B	840	1870	4370	138500	4070	39	1810	990	460
1263	CC	B	680	520	3660	76120	370	5	2160	1140	530
1281	CC	B	200	910	2890	142730	2510	24	1890	990	450
1341 B	SC	B	1040	2580	3130	16430	1710	15	1690	880	560
1351 B	SC	B	2770	19310	2650	34290	8730	-	1680	900	640
1361	CC	B	5680	13900	3000	5320	440	9	1780	780	1080
1362	CC	B	5270	9200	1960	16870	1210	8	1910	810	840
1501 B	Sc	cs	1180	3440	2610	31370	2020	19	1340	780	110
1502	SC	CS	660	700	2180	24920	1390	17	2410	1710	100
1503	SC	NT	1160	13000	2400	16240	7070	61	1530	1320	0
1504	Sc	NT	1440	6590	2470	41110	5640	55	2120	1830	0
1505	CC	CS	1880	1460	3060	47750	1600	18	1880	1620	130
1506	CC	CS	2510	2490	2860	19180	2570	28	1960	1690	150
1507	CC	NT	940	7050	5960	29590	11650	64	1680	1450	0
1508	CC	NT	980	5250	4040	34350	8650	61	1870	1100	0
191 A1	SC	CS	70	1560	3380	2180	1360	11	1460	870	180
191 1B	SC	CS	2270	900	3000	0	0	. 1	340	50	50
1931	SC	NT	2390	18100	3470	114880	18690	81	670	400	0
1932	CC	CS	1790	6330	4010	10440	3530	26	1620	970	230
1951	CC	CS	190	3070	12350	29580	22280	60	2350	1410	180
1952	CC	NT	100	3810	10080	35250	21680	66	1980	1180	0
1971	CC	NT	3190	17790	3710	17730	11910	85	550	330	0
2074	SC	NT	1590	8130	1940	17580	14300	96	340	50	0

a Abbreviations: AREA -- study area, PLOT -- study plot, MODE -- treatment mode, METHOD =treatment method, $D 82$ - 1982 desirable stemg, D83-= 1983 desirable gtems, UD82 - 1982 tree stems, UD83 - 1983 tree stems, STMSPB3 =- total number of tree stump sprouts in 1983, PERCSPT -- percentage of tree stumps that sprouted, LAB83 -- 1983 cogt for labor, EQU83 -- 1983 cost for equipment, and HAT83 -- 1983 cost for materialg.
b Abbreviations: cc -- cleazcut, nonselective; $S C-$ gelective cut, selective.

C Abbreviations: $B=-\quad$ basal, $C S$ - cut gtump, NT - no treatment.

Appendix Table 8. Original vegetation and cost data from the first conversion cycle study -- Study 4.a

AREA PLOT BLK MODE ${ }^{\text {b }}$ METHODC D87 UD87 DG687 UG687 DG1287 UG1287 DHT87 UHT87 HERB86 LAB84 EQU84 MATEA

a Abbreviations: AREA -- study area, PLOT -- study plot, BLK -- block; MODE -- treatment mode, METHOD -- treatment method, D87 -- 1987 desirable stems, UD87 -- 1987 tree stemg, DG687 -- number of 1987 desirables greater than 1.8 m tall, UG687 -- number of 1987 trees greater than 1.8 m tall, DG1287 -number of 1987 desirables greater than 3.7 m tall, UG1287-- number of 1987 trees greater than 3.7 m tall, DHT87 -- 1987 desirable average stem height, UHT87 -- 1987 tree average stem height, HERB86 -- 1986 herbaceous cover, LAB84 -- 1984 cost for labor, EqU84 -- 1984 cost for equipment, and MAT84 -- 1984 cost for materials.
b Abbreviations: $N=$ nonselective, S-- selective.
c Abbreviations: B -- basal. F -- stem-fnliar

Appendix table 9. Original vegetation and cost dats from the second conversion cycle study .- study 4."

AREA PLOT BLK MOOE METHOD ${ }^{\text {c }}$ WATER ${ }^{\text {d }} \quad 090 \quad 1090 \quad 06690$ UG690 DG1290 UG1290 OMHT90 UNHT90 HERB89 LABB4 EOU84 MAT84

126	18	1	s	F	wo	0	150	0	0	0	0	0	0.6	73	280	50	130
126	28	1	5	B	NO	180	4140	0	50	0	0	\dagger	1	54	300	60	160
126	3	1	N	F	no	110	540	0	0	0	0	0.4	0.7	54	120	20	140
128	1	1	N	B	HO	580	330	0	0	0	0	1	0.9	69	480	90	230
134	18	2	5	F	NO	3780	1130	0	60	0	0	0.9	0.8	57	170	100	130
135	18	2	S	B	NO	21860	3200	3610	1140	0	90	1.3	1.6	39	400	80	350
136	1	2	N	F	NO	1780	330	0	0	0	0	0.4	0.4	77	180	30	110
136	2	2	N	B	VES	17220	4900	280	2050	0	90	1.1	2	78	260	50	140
150	18	3	5	F	NO	2140	2420	140	50	0	0	0.9	0.6	64	180	30	130
150	2	3	S	B	YES	1670	7960	300	5440	0	270	1.4	2.6	73	370	70	120
150	3	4	S	F	H0	3270	530	1530	110	0	0	2	1.6	88	200	40	60
150	4	4	5	B	YES	3070	3130	1540	1100	70	110	2.1	1.8	82	330	60	70
150	5	3	N	F	NO	1650	2560	0	0	0	0	0.4	0.4	77	240	50	140
150	6	3	N	B	YES	650	5800	240	2500	0	1000	1.6	2.1	68	360	70	120
150	7	4	N	F	NO	100	930	0	30	0	0	0.7	0.6	66	250	50	210
150	8	4	N	8	YES	2980	3560	280	890	0	140	1.4	1.6	71	340	70	160
191	A1	5	S	8	NO	780	1720	0	0	0	0	0.7	0.6	79	340	70	190
191	18	5	5	F	HO	660	120	60	0	0	0	1	0.5	90	180	30	50
193	1	6	5	8	NO	2150	3210	270	0	110	0	1.3	0.6	71	310	60	120
193	2	5	N	F	NO	190	220	0	0	0	0	0.6	0.6	77	150	30	40
195	1	5	N	B	NO	820	2200	0	80	0	0	0.9	0.8	81	360	70	120
195	2	6	N	F	NO	50	410	0	0	0	0	0.8	1	69	210	40	60
197	1	6	N	8	N0	2470	3180	0	0	0	0	0.6	0.7	79	610	120	280
207	4	6	5	F	NO	\$6280	1090	1660	90	180	40	1.3	0.9	69	210	40	90

a Abbreviations: AREA .. study area, PLOT .. study plot, BLK .. block, MCOE .- treatment mode, METHOD .. treatment method, 090 -- 1990 desirable stems, 4090 -- 1990 tree stems, D6690 -. number of 1990 desirable stems greater than 1.8 m tall, UG690 -- number of 1990 tree stems greater than 1.8 m tall, DG1290 -- number of 1990 desirable stems greater than 3.7 m tall, UG 1290 .. number of 1990 tree stems greater than 3.7 m tall, DHI90 -. 1990 desirable avergie stem height, UHT90 -- 1990 average tree stem height, HERB89 .. 1989 herbaceous cover, LaB88 -- 1988 cost for tabor, EOU88 .- 1988 cost for equipment, and MAT83 .- 1988 cost for materials.
b Abbreviations: N.- nonselective, s-- selective.
c Abbreviations: a -- basal, f .- stem-foliar.
d watek: wo .. received herbitide treatment in 1988; yEs -- did not receive herbicide trentment, but was rreated with water.

Appendix Table 10. Original 1987 vegetation and cost data from the second conversion cycle non-herbicide study -- Study 5.a

AREA	PLOT	METHOD ${ }^{\text {b }}$	D87	UD87	DG687	UG687	DG1287	UG1287	DMHT87	UMHT87
					stems ha-1				m	
8126	4	G	0	11250	0	20	0	0.6	0	1.3
8132	1234	G	1730	20560	0.6	25.7	0	2.1	0.9	1.6
8134	1	BH	240	19310	14.3	33.8	0	20	1.1	1.8
8134	1AAAB	G	5400	14240	0	38	0	0.01	0.5	1.8
8134	2	BH	510	15640	0	14.7	0	0.4	1	1.4
8134	4	BH	170	30430	0	45.9	0	4.7	1. 1	2
8135	1 A	BH	6860	14590	0	12	0	0	1.1	1.4
8154	2A2B	BH	100	14700	0	3	0	0	0.8	0.8
8154	3	BH	1050	3770	0	11	0	0	1.3	1.1
8154	4	BH	890	5040	0	4	0	0	0.7	0.9
8156	1	BH	550	13270	0	28.8	0	0	0.9	1.5
8156	234	G	7610	7950	0.8	14.2	0	0.6	0.8	1.4
8158	12	G	1300	88140	0	12	0	0	0.8	1.1
8159	2122	G	750	17640	0	4	0	0	0.9	1
8199	12	G	1400	7260	1.9	14.5	0	1.2	0.9	1.3
8199	3	BH	900	6330	8.6	39.4	0	3.7	1.2	1.8
8205	1	BH	9740	1130	35	38	0	0	1.2	1.1
8207	1	BH	9360	10980	39	61	0	0	1.6	1.7
8207	23	G	7230	3520	26.9	46.1	0	0	1.3	1.6

[^11]b Abbreviations: G -- grub, BH -- brush hog.

Appendix Table 11. Original 1988 and 1990 vegetation and cost data from the second conversion cycle non-herbicide study -- Study 5.a

AREA PLOT METHOD ${ }^{\text {b }}$ D90 UD90 DG690 UG690 DG1290 UG 1290 DMHT90 UMHT90 LAB88 EQU88 MAT8S

[^12]Appendix Table 12. Subplot treatment of grubbed plots, including costs and percent cover of seeded and native plants .. Study 5.

			Subpl ot treatments				Treatment costs					Relative percent herbaceous cover	
Site	Plot	Subpl ot	Seed mix ${ }^{\text {a }}$	Fertilization ${ }^{b}$	track	Mulch ${ }^{\text {c }}$	Grub	Seed	Fertilization	Track	Mulch	Seed mix	other
			crownvetchnone				dollars ha-1						
8126	4	4A		yes	yes	no	1460	550	90	180	-	0.5	64.5
		4B		yes	yes	no	1460	550	90	180	.	0.0	55.0
		4 C		yes	yes	no	1460	.	90	180	-	0.0	63.0
8132	1234	14	standard	yes	yes	no	2380	180	100	290	-	32.0	53.0
		18	"	yes	yes	yes	2380	180	100	290	400	32.0	52.5
		1 C	" (nutricoated)	yes	yes	no	2380	180	100	290	-	16.5	62.5
		2 A	flat pes	yes	yes	no	2380	250	100	290	-	0.0	95.5
		28	$\text { " } 1$	yes	yes	yes	2380	250	100	290	400	11.0	85.5
		2C	4 " (nutricoated)	yes	yes	no	2380	240	100	290		1.0	96.5
		3A	cromivetch	yes	yes	no	2380	540	130	290	-	5.0	90.5
		38	"	yes	yes	yes	2380	540	130	290	380	6.0	85.0
		3 C	* (nutricoated)	yes	yes	no	2380	530	130	290	-	3.5	89.5
		4A	triticale	yes	yes	no	2380	470	130	290	-	0.0	98.0
		48	goldenrod	yes	yes	no	2380	330	130	290	-	4.0	96.0
		4 C	Wetsel speciat	yes	yes	no	2380	500	130	290	-	1.0	99.0
8134	1AMAB	1AA	crownvetch	yes	yes	no	1510	560	110	330	-	40.0	53.5
		1AB	\cdots (nutricoated)	yes	yes	no	1510	530	110	330	-	3.5	89.0

Appendix Tabte 12. continued.

Appendix Table 12. contimued.

Site	Plot	Subpl ot	Subplot treatments					Treatment costs					Relative percent herbaceous cover	
			Seed mix ${ }^{\text {a }}$		Fertil- ization	Track	Mulch	Grub	Seed	Fertil- ization	Track	Mulch	Seed mix	Other
8207									\ldots	dollars ha	1			
	23	2A	flat pea		yes	yes	no	1400	280	150	250	-	7.5	92.5
		28	" "	(nutricoated)	yes	yes	no	1400	270	150	250	-	9.5	89.0
		3A	standard		yes	yes	no	1400	200	150	250	-	34.5	64.5
		38	"	(nutricoated)	yes	yes	no	1400	200	150	250	-	44.5	55.5

a Standard \cdots Kentucky 3164.68%, birdsfoot trefoil 21.78%, redtop 10.17%, inert matter 50%, total $50 \mathrm{~kg} \mathrm{ha}^{-1}$. Standard nutricoated -- same mix as previous except one-half of the weight is fertil-cote (fertil-Cote .. Lime and fertilizer: nitrogen 1\%, phosphoric acid 6.5\%, potash 3.5\%, iron.35\%, zinc. 44%, Apron (disease protection)) . Flat pea .- Lathco flat pea 49.0\%, Kentucky 31 fescue 38.4 x , sorgum Sudan Grass 9.9%, inert matter, total $44 \mathrm{~kg} \mathrm{ha}^{-1}$. Flat pea mutricoated .- same mix as previous except one-helf of the weight is Fertil-cote. Crownvetch .- crownvetch 43.12\%, Kentucky 31 fescue 42.24\%: sorghum sudangrass $11.76 x$, total 38 kg ha ${ }^{-1}$. Crownvetch nutricoated -- same mix as previous except one-half of the weight is fertil-cote. Wet soils .. birdsfoot trefoil 37.24\%, reeds canary grass 37.14%, alsike clover 15.9 , red top 7.90%, total $44 \mathrm{~kg} \mathrm{ha}{ }^{-1}$. Wet soils nutricoated .- same mix as previous except one-half of the weight is fertil-cote. Sod -- Ruebans bluegrass 33.26\%, Saratoga bromegrass 32.20%, Pemlam red fescue 15.52%, red top 12.88%, total $44 \mathrm{~kg} \mathrm{ha}{ }^{-9}$. Sod -- same mix as previous except one-half of the weight is fertil-cote. Tritical -- Tritical trical 93.00%, Crownvetch 6.89%, total $179 \mathrm{~kg} \mathrm{ha}^{-1}$. Goldenrod mix -- goldenrod seed with inert matter to add weight for spreading ease, total $23 \mathrm{~kg} \mathrm{ha}{ }^{-1}$. Wetsel special seed Mix. Tall fescue 60%, Alsike elover 20x, Canadian Bluegrass 20%, total $44 \mathrm{~kg} \mathrm{ha}^{-1}$.

6 fertilizer $\cdot-25-3-9.225 \mathrm{~kg} \mathrm{ha}^{-1}$.
c Mulch -- straw, 58 bales ha-1

VITA

NAME: Christopher A. Nowak

```
DATE AND PLACE OF BIRTH: July 13, 1959
    Buffalo, New York
```

HOME ADDRESS: 413 Nelson Avenue East Syracuse, New York 13210

MARITAL AND FAMILY STATUS: Married to Linda C. Nowak for 7 years, with four children -- Tristan (age 6), Morgan (age 4 $\frac{1}{2}$), Rebekah (age 3) and Jocelyn (age 1).

	Name and Location	Dates	Degree
High School	St. Mary's High School Lancaster, N.Y.	1973-1977	H.S. Diploma
College	Morrisville ATC Morrigville, New York	1977	
	Erie Community College Buffalo, New York	1978	
	SUNY Coll. Env. Sci. For., Wanakena, New York	1978-1979	A.A.S.
	University of Idaho Moscow, Idaho	1981	
	Erie Community College Buffalo, New York	1982-1983	
	SUNY Coll. Env. Sci. For., Syracuse, New York	1983-1985	B.S.
	SUNY Coll. Env. Sci. For., Syracuse, New York	1985-1986	M.S.
	University of Florida Gainegville, Florida	1987	
	SUNY Coll. Env, Sci. For., Syracuse, New York	1989-1992	Ph.D.

VITA continued.

PROFESSIONAL EXPERIENCE:

Research Forester Starting February 8, 1993. Employer: U.S. Department of Agriculture Forest Service, Northeastern Forest Experiment Station, Forestry Sciences Laboratory, P.O. Box 928, Warren, Pennsylvania.

Visiting Assistant Professor August 1992 to December, 1992. Employer: State University of New York, College of Environmental Science and Forestry, Syracuse, New York.

Doctoral Candidate August 1989 to present. Employer: State University of New York, College of Environmental Science and Forestry, Syracuse, New York.

Principal Research Support Specialist octaber 1988 to present. Employer: Research Foundation of state University of New York, Syracuse, New York.

Technical Specialist January 1988 to October 1988. Employer: Research Foundation of State University of New York, Syracuse, New York.

Research Analyst January 1987-December 1987. Employer: University of Florida, Gainesville, Florida.

Graduate Research Assistant May 1985-December 1986. Employer: State University of New York, College of Environmental Science and Forestry, Syracuse, New York.

Land Surveyor June 1979-September 1981. Employers: Rene Sauvageau, Statler Building, Buffalo, New York, and McIntosh and McIntosh, PC, 429 Pine Avenue, Lockport, New York.

Additional full- and part-time employment to earn college and living costs from September 1981 to May 1985 included: night manager for a fast-food restaurant, auto parts salesman, crew leader for a silviculture research team, laboratory technician and dispatcher for a Public Safety department.

[^0]: 1 Abbreviations: ROW, right-of-way; ROWs, rights-of-way.

[^1]: " Importance values were calculated as the sun of relative density and relative frequency.

[^2]: 4 Garlon 4, DowElanco, Indianapolis, Indiana 46268-1189.
 5 Tordon RTU, DowElanco, Indianapolis, Indiana 46268-1189.

[^3]: a The 4×4 spray rig and tank truck were used only for the basal and stem-foliar herbicide treatments, the brush hog, chaineaw, and 4×4 pickup were uged for brush hogging, the chainsaw for cut atump, and the D-6 bulidozer and 4×4 pickup were used for grubbing.
 b Basal herbicide formulation consisted of 7.6 L of Garlon 4 and 371 L of No. 2 fuel oil.
 c Cut stump formulation was Tordon RTU, a "ready to use" formulation.
 d Stem-foliar herbicide formulation consigted of 1.5 L of Garion 4, 1.9 L of Amdon 101 (firet conversion cycle) or tordon 101 (second conversion cyclet, 1 L of surfactant (Surfel), and 375 L of water.

[^4]: - Concomitant variable for desirable stem density was 1982 desirable sten density, for total tree stump sprouts it was 1982 tree stem density, for labor cost it was 1982 tree stem density for selective treatment plots and 1982 desirable plus tree stem densities for nonselective treatment plots.
 b A hyphen for the covariate means that the correlation between the concomitant variable and the dependent variable was <0.30, so the covariste was not included in the model. A hyphen for the contrast means these effects were not tested.
 c Contrasts: Herb. vs MT -- herbicide treatments versus no herbicide treatments, a vs cs .. basal versus cut stump, IWT: Herb. vs WT -- interaction of mode and method for the herbicide treatments versus no herbicide treatments, INT: B vs CS -- interaction of mode and method for basal versus cut stump, w/ -- within.

[^5]: a Treatments: NS -- nonselective, s-- selective, B -- basal, CS -- cut stump, NT -- no herbicide treatment.
 b Unadjusted means are calculated directly from the plot data, adjusted means are from the analysis of covariance.

 C Numbers in parentheses below the means are standard errors.
 d A hyphen for adjusted means means that analysis of covariance was not uged.

[^6]: - simple effects abbreviations: B .- basal, sf -. sten-foliar, w/ .- within, ${ }^{\text {| }}$.. nonselective, s.. selective.
 b Concomitant variable for desirable stem density was 1987 desirsble stem density, for tree stem density it was 1987 tree stem density, for number of desirable stens greater than 1.8 m it was 1987 number of desirable stems greater than 1.8 m , for number of tree stems greater than 1.8 m it was 1987 munber of tree stems greater than 1.8 m , for desirable mean height it was 1987 desiruble stem mean height, for tree mean height it was 1987 tree stem mean height, and for percent herbaceous cover it mas $\mathbf{1 9 6 6}$ percent herbaceous cover.

 C A hyphen for the covariste means that the correlation between the concomitant variable and the dependent variable was <0.30, so the covariate was not included in the model. A hyphen for the block effect means this effect mas included in the model, but not tested. A hyphen for the simple effect means that this effect was not tested because the interaction was not significant ($P>0.20$).

[^7]: a Simple effects abbreviations: B -- basal, SF -- stemfoliar, w/ -- within, N-- nonselective, s-- selective.

[^8]: a Treatments: B -- basal, SF -- otem-foliar, Herb. -- herbicide, basal combined with stem-foliar, BH -= bruah hogging, G -= grubbing.
 b Unadjugted means are calculated directly from the plot data, adjusted means are from the analysis of covariance.

 C Numbers in parentheses below the means are standard errors.
 d A hyphen for adjusted means means that analyeis of covariance was not used.

[^9]: 8 Bramble and Byrnes' 1987 results are based on two reports: 1) 1989 annual report to cooperators, Green Lane Research Project on the Elroy to Hosensack 500 kV line of the Philadelphia Electric Company; and 2) 1988 annual report to cooperators (Asplundh Tree Expert Company, Dowelanco Chemical Company. Pennsylvania Electric Company, Pennsylvania Game Commission, and Rhóne-Poulenc, Inc.) Gamelands 33 research.

[^10]:

[^11]: a Abbreviations: AREA -- study area, PLOT -- study plot, METHOD -treatment method, D90 -- 1990 desirable stems, UD90 -- 1990 tree stems, DG690 -- number of 1990 desirables greater than 1.8 m tall, UG690 -number of 1990 trees greater than 1.8 m tall, DG1290 -- number of 1990 desirables greater than 3.7 m tall, UG1290 -- number of 1990 trees greater than 3.7 m tall, DHT90 -- 1990 desirable average stem height, ÜHT90 - 1990 tree average stem height, LAB88 -- 1988 cost for labor, EQU88 -- 1988 cost for equipment, and MAT83 -- 1988 cost for materiaís.

[^12]: a Abbreviations: AREA -- study area, PLOT -- study plot, METHOD -- treatment method, D90 -- 1990 desirable stems, UD90 -- 1990 tree stems, DG690 -- number of 1990 desirables greater than 1.8 m tall, UG690 -- number of 1990 trees greater than 1.8 m tall, DG1290 --- number of 1990 desirables greater than 3.7 m tall, UG1290-- number of 1990 trees greater than 3.7 m tall, DHT90 -- 1990 desirable average stem height, UHT90-- 1990 tree average stem height, LAB88 -- 1988 cost for labor, EQU88 -- 1988 cost for equipment, and mat83 -- 1988 cost for materials.
 b Abbreviationg: G -- grub. BH -- brush hog.

